Are there answer choices ?
Answer:
Option 3
Step-by-step explanation:
When it says 12 less, that means -12.
Hope I helped. :)
Answer:
<em><u>x=-6, y=-2</u></em>, (As a point) (-6, -2).....The point form is not necessary unless you want to solve the system (of equations) by graphing.
Step-by-step explanation:
By substitution:
x-y=-4 By adding y on both sides,
x=y-4
Now you can substitute x for the expression (y-4)
Plug the (y-4) as x in the other equation.
So -2x+3y=6 becomes
-2(y-4)+3y=6
Now solve:
-2(y-4)+3y=6 distributes out to be
-2y+8+3y=6 Now combining like terms
y+8=6 Subtract 8 on both sides to isolate the variable
<u><em>y=-2</em></u>
Now plug the value -2 in where the y is in any equation (preferably the easier/less complicated one) and solve for x.
So x-y=-4 becomes
x-(-2)=-4
=x+2=-4
=<u><em>x=-6</em></u>
Answer:
1. ∀ y ∈ Z such that ∃ x ∈ Z, ¬R (x + y)
2. ∃ x ∈ Z, ∀ y ∈ Z such that ¬R(x + y)
Step-by-step explanation:
If we negate a quantified statement, first we negate all the quantifiers in the statement from left to right, ( keeping the same order ) then we negative the statement,
Here, the given statement,
1. ∃y ∈Z such that ∀x ∈Z, R (x + y)
By the above definition,
Negation of this statement is ∀ y ∈ Z such that ∃ x ∈ Z, ¬R (x + y),
2. Similarly,
The negation of statement ∀x ∈Z, ∃y∈Z such that R(x + y),
∃ x ∈ Z, ∀ y ∈ Z such that ¬R(x + y)