Answer:
Hi
Step-by-step explanation:
Step-by-step explanation:
F( <em>x</em><em> </em><em>)</em><em> </em><em>=</em><em> </em><em>5</em><em> </em><em>(</em><em>3</em><em>)</em><em> </em><em>^</em><em> </em><em>x</em>
<em>Y</em><em> </em><em>intercept</em><em> </em>
<em>Let</em><em> </em><em>x</em><em> </em><em>=</em><em> </em><em>0</em>
<em>f</em><em>(</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>5</em><em>×</em><em> </em><em>3</em><em> </em><em>^</em><em> </em><em>0</em>
<em>f</em><em>(</em><em>0</em><em> </em><em>=</em><em> </em><em>5</em><em> </em><em>×</em><em> </em><em>1</em>
<em>f</em><em>(</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>5</em>
<em>X</em><em> </em><em>intercept</em><em> </em>
<em>let</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>o</em>
<em>0</em><em> </em><em>=</em><em> </em><em>5</em><em> </em><em>×</em><em> </em><em>3</em><em> </em><em>^</em><em>x</em>
<em>No</em><em> </em><em>x</em><em> </em><em>intercept</em><em>/</em><em> </em><em>zero</em>
<em>therefore</em><em> </em>
<em>Vertical</em><em> </em><em>intercept</em><em> </em><em>(</em><em>0</em><em>;</em><em> </em><em>5</em><em>)</em>
<em>Domain</em><em> </em><em>XER</em>
<em>▪︎</em><em>this</em><em> </em><em>refer</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>of</em><em> </em><em>X</em>
The sequence$$1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2,2,2,2,2,1,2,\dots$$consists of $1$'s separated by blocks of $2$'s with $n$ $2$'s i
kicyunya [14]
Consider the lengths of consecutive 1-2 blocks.
block 1 - 1, 2 - length 2
block 2 - 1, 2, 2 - length 3
block 3 - 1, 2, 2, 2 - length 4
block 4 - 1, 2, 2, 2, 2 - length 5
and so on.
Recall the formula for the sum of consecutive positive integers,
Now,
which means that the 1234th term in the sequence occurs somewhere about 1/5 of the way through the 49th 1-2 block.
In the first 48 blocks, the sequence contains 48 copies of 1 and 1 + 2 + 3 + ... + 47 copies of 2, hence they make up a total of
numbers, and their sum is
This leaves us with the contribution of the first 10 terms in the 49th block, which consist of one 1 and nine 2s with a sum of .
So, the sum of the first 1234 terms in the sequence is 2419.