Answer:
r = 144 units
Step-by-step explanation:
The given curve corresponds to a parametric function in which the Cartesian coordinates are written in terms of a parameter "t". In that sense, any change in x can also change in y owing to this direct relationship with "t". To find the length of the curve is useful the following expression;

In agreement with the given data from the exercise, the length of the curve is found in between two points, namely 0 < t < 16. In that case a=0 and b=16. The concept of the integral involves the sum of different areas at between the interval points, although this technique is powerful, it would be more convenient to use the integral notation written above.
Substituting the terms of the equation and the derivative of r´, as follows,

Doing the operations inside of the brackets the derivatives are:
1 ) 
2) 
Entering these values of the integral is

It is possible to factorize the quadratic function and the integral can reduced as,

Thus, evaluate from 0 to 16
The value is 
The function is

, and according to the description of the function in the problem statement, we have the following:
at t=0 after being thrown (that is, at initial time), the height of the ball is calculated by h(0) as follows:

(ft), which is the initial height, as expected.
At t=1 (sec), the height would be

.
etc.
The path is parabolic, as we know by seeing that the function is a quadratic polynomial function. This function has been given in factored form as well. From that we can see that the zeros of the function are t=7 and t=-2.
This means that at t=7 sec, the height h is 0, which means that the ball has hit the ground. t=-2 has no significance in the context of our problem so we just neglect it.
Answer: B) 7 sec
Answer:
4x^2 + 8x - 12 = 0.
Step-by-step explanation:
We first write it in factor form.
4(x - 1)(x + 3) = 0
4(x^2 + 2x - 3) = 0
4x^2 + 8x - 12 = 0 (answer).
Answer:
Angles DBA, GFE, and GFH (not an option) are acute.
Step-by-step explanation:
Acute means less than 90 degrees. I hope that this helps! :)
The answer to this is,1/4.