Answer:
The expression
represents the number
rewritten in a+bi form.
Step-by-step explanation:
The value of
is
in term of ![i^{2}[\tex] can be written as, [tex]i^{4}=i^{2}\times i^{2}](https://tex.z-dn.net/?f=i%5E%7B2%7D%5B%5Ctex%5D%20can%20be%20written%20as%2C%20%3C%2Fp%3E%3Cp%3E%5Btex%5Di%5E%7B4%7D%3Di%5E%7B2%7D%5Ctimes%20i%5E%7B2%7D)
Substituting the value,

Product of two negative numbers is always positive.

Now
in term of ![i^{2}[\tex] can be written as, [tex]i^{3}=i^{2}\times i](https://tex.z-dn.net/?f=i%5E%7B2%7D%5B%5Ctex%5D%20can%20be%20written%20as%2C%20%3C%2Fp%3E%3Cp%3E%5Btex%5Di%5E%7B3%7D%3Di%5E%7B2%7D%5Ctimes%20i)
Substituting the value,

Product of one negative and one positive numbers is always negative.

Now
can be written as follows,

Applying radical multiplication rule,


Now,
and 

Now substituting the above values in given expression,

Simplifying,

Collecting similar terms,

Combining similar terms,

The above expression is in the form of a+bi which is the required expression.
Hence, option number 4 is correct.
Answer:
x - 3 > 10
Step-by-step explanation:
X = larger number, y = smaller number
x = 5y
x - y = 36
5y - y = 36
4y = 36
y = 36/4
y = 9
x = 5y
x = 5(9)
x = 45
ur numbers are 45 and 9 <==
Answer:
(12-7x)
Step-by-step explanation:
144 − 49x²
by observation, we can see that 144 = 12² and 49 = 7²
hence we can rewrite the equation
144 − 49x²
= 12² - 7²x²
= 12² - (7x)²
recall that the expression x² - y² = (x+y)(x-y)
hence,
12² - (7x)²
= (12 + 7x)(12-7x)
(12-7x) appears in the expression above, hence 12 -7x is a factor
I believe it is -7 but I may be misunderstanding the question