1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ludmilka [50]
2 years ago
7

Hey can someone help me

Mathematics
1 answer:
kogti [31]2 years ago
4 0

5n^2=25n 25n+19n=44n 44n+12 is the answer

You might be interested in
Nick’s house is 4.28 miles from school. if nick’s average stride length is 3.1 feet, how many strides will it take him to walk t
sveta [45]
7,289.80647 strides to walk 4.28 miles from school.
4 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Find the value of x.
prohojiy [21]
X would be 90° ... every x is 90°
3 0
3 years ago
Write the value of the underlined digit four ways. 5,678.321 (the 2 is underlines)
dangina [55]
.02,
2 hundredths,
1/50,
1:50.
3 0
4 years ago
Read 2 more answers
What would be a model that could be used to describe this situation?
Taya2010 [7]
I confused ! I don't get what your trying to say please explain better !
4 0
3 years ago
Other questions:
  • Using the law of Cosines, in triangle DEF, if e=18 yd, d=10 yd, f=22 yd, find angle D
    6·1 answer
  • What is the answer to (5x+1)(x+2)=-1
    10·1 answer
  • What is .00000786 in scientific notation
    15·2 answers
  • Solve for x: 5x + 2 = 4x - 9.
    9·2 answers
  • X^2 + 16<br> Factor the polynomial completely
    9·1 answer
  • The perimeter of an isosceles triangle less than 20 inches. If the base is 5 inches, what is the maximum length of each of the l
    5·1 answer
  • Currently, Jane has \$35000.00 in her bank. She plans on saving \$ 12000.00 every year, and depositing that into her bank accoun
    12·1 answer
  • Calculate the slope of a line that passes through the points (3, -20) and (5, 8).
    14·2 answers
  • Please hurry i have no idea <br> -23 + |7| - 4 · 2
    14·1 answer
  • I need help with this.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!