The mass of plutonium that will remain after 1000 years if the initial amount is 5 g when the half life of plutonium-239 (239pu, pu-239) is 24,100 years is 2.5 g
The equation is Mr=Mi(1/2)^n
where n is the number of half-lives
Mr is the mass remaining after n half lives
Mi is the initial mass of the sample
To find n, the number of half-lives, divide the total time 1000 by the time of the half-life(24,100)
n=1000/24100=0.0414
So Mr=5x(1/2)^1=2.5 g
The mass remaining is 2.5 g
- The half life is the time in which the concentration of a substance decreases to half of the initial value.
Learn more about half life at:
brainly.com/question/24710827
#SPJ4
I think it is B! I am so sorry if it’s wrong, love.
We are tasked to solve for the volume of the gas that occupies when pressure and temperature changes to 400 Torr and 200 Kelvin from Torr and 400 Kelvin. We can use ideal gas law assuming constant gas composition and close system. The solution is shown below:
P1V1 / T1 = P2V2 / T2
V2 = P1V1T2 / T1P2
V2 = 800*72*200 / 400*400
V2 = 72 ml
The answer for the volume is 72 ml.
Formula of density is mass divided by volume.
Answer:
Humans are modifying the world in many ways, and not all of them for the better. The changes we cause are often severe challenges to animals, plants and microbes in nature, from the introduction of pathogens or exotic invasive species to adding toxic substance or excessive nutrients, or causing climatic change. Often several changes occur at once. Nelson Hairston's lab focuses on freshwater environments, especially lakes and ponds, where some of the species present respond to environmental change with decreases in their numbers, even to the point of extinction, while others may benefit to excess, becoming so dominant that they present problems, as in the case of harmful algal blooms stimulated by nutrient enrichment or climate warming. Hairston's lab studies how individual species, food webs, and whole ecosystems are altered when the environment changes.
One way that some freshwater organisms respond to environmental change is to evolve rapidly. A marked change in the environment favors some characteristics of plants, animals and microbes over others. These character differences are often genetically based so that favored characteristics may increase in the next generation. The shorter the generation time, the faster this evolutionary change can occur. For example, tiny but abundant plankton, eaten by fish and other larger animals, can become adapted to the changed environment within a few years because their generation time is only a few days. Hairston's lab has shown that planktonic "water fleas" (Daphnia), major consumers of suspended algae in lakes, evolved to be tolerant of harmful algae within a decade of the appearance of blooms. This rapid evolution (termed "evolutionary rescue" in conservation biology) raises many intriguing questions, for all environments, not just freshwater: To what extent can we rely on species adapting rather than going extinct when their environment changes? How does the evolution of a species that plays a critical ecological role alter the interactions it has with other species, and the functioning of the entire ecosystem?