<u>Answer:</u> The pH of the solution is 11.24
<u>Explanation:</u>
We are given:
Molarity of ammonia = 0.2 M

The given chemical equation follows:

I: 0.2
C: -x +x +x
E: 0.2-x x x
The expression for equilibrium constant follows:
![K_b=\frac{[NH_4^+][OH^-]}{[NH_3]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BNH_4%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BNH_3%5D%7D)
Putting values in above expression, we get:

Neglecting the negative value of x as concentration cannot be negative.
So, ![[OH^-]=x=1.88\times 10^{-3}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3Dx%3D1.88%5Ctimes%2010%5E%7B-3%7DM)
pOH is defined as the negative logarithm of hydroxide ion concentration present in the solution.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)
Putting values in above equation, we get:

We know:

Hence, the pH of the solution is 11.24
The reactions based on the absorption and release of the energy are called endothermic and exothermic reactions. The reaction is exothermic.
<h3>What is an exothermic reaction?</h3>
Exothermic reactions are the reaction in which the reactant produces products that release energy from the system to the surroundings. In the reaction bond energy of the reactant is less than the product.
Energy from the system is released in the form of heat, sound, light and electricity. The weak bonds of the compounds are replaced with stronger ones and the standard enthalpy of the reaction is negative.
Therefore, option c. reaction is exothermic is correct.
Learn more about the exothermic reactions here:
brainly.com/question/26616927
Answer:
Current
Explanation:
An electric fence used to contain cattle works by transmitting energy through a conductor creating an electric current.
An electric fence is usually connected to an electric power source . The connection brings about the flow of electric charges(current) which is aided by the presence of a conductor. The conductor ensures smooth flow of electric current to achieve the main purpose of the fence.
<u>We are given:</u>
Mass of NaCl in the given solution = 22.3 grams
Volume of the given solution = 2 L
<u></u>
<u>Number of Moles of NaCl:</u>
We know that the number of moles = Given mass / Molar mass
Number of moles = 22.3 / 58.44 = 0.382 moles
<u></u>
<u>Molarity of NaCl in the Given solution:</u>
We know that Molarity of a solution = Moles of Solute / Volume of Solution(in L)
Molarity = 0.382 / 2
Molarity = 0.191 M
<em />