Answer:
4.52 mol/kg
Explanation:
Given data:
Mass of lithium fluoride = 22.1 g
Mass of water = 188 g
Molality = ?
Solution:
Molality:
It is the number of moles of solute into kilogram of solvent.
Formula:
Molality = number of moles of solute / kilogram solvent
Mathematical expression:
m = n/kg
Now we will convert the grams of LiF into moles.
Number of moles = mass/ molar mass
Number of moles = 22.1 g/ 26 g/mol
Number of moles = 0.85 mol
Now we will convert the g of water into kg.
Mass of water = 188 g× 1kg/1000 g = 0.188 kg
Now we will put the values in formula.
m = 0.85 mol / 0.188 kg
m = 4.52 mol/kg
Answer:
Stronger
Greater
Higher
Explanation:
Molecules are held together by intermolecular forces. These are forces that act between molecules in a particular state matter. Intermolecular forces depend on the nature of the molecule.
For polar molecules, the intermolecular forces are stronger thus it takes more energy to separate them leading to a higher boiling point of polar molecules irrespective of their molecular mass.
Answer:
chloroplast organelle
Answer. The photosynthesis process takes place in the chloroplast organelle in the growing tissues. As the chlorophyll pigment is available in the chloroplast organelle which is the main photosynthetic pigment, with the help of the molecules they capture the energy of light.
Explanation:
chloroplasts
In plants, photosynthesis takes place in chloroplasts, which contain the chlorophyll. Chloroplasts are surrounded by a double membrane and contain a third inner membrane, called the thylakoid membrane, that forms long folds within the organelle.
Explanation:
The dimensions of a standard backpack is 30cm x 30cm x 40cm
The mass of an average student is 70 kg
We know that, the density of gold is 19.3 g/cm³.
Let m be the mass of the backpack. So,
An average student has a mass of 70 kg. If we compare the mass of student and mass of backpack, we find that the backpack is 10 times of the mass of the student.
Answer:
2.7 × 10⁻⁴ bar
Explanation:
Let's consider the following reaction at equilibrium.
SbCl₅(g) ⇄ SbCl₃(g) + Cl₂(g)
The pressure equilibrium constant (Kp) is 3.5 × 10⁻⁴. We can use these data and the partial pressures at equilibrium of SbCl₅ and SbCl₃, to find the partial pressure at equilibrium of Cl₂.
Kp = pSbCl₃ × pCl₂ / pSbCl₅
pCl₂ = Kp × pSbCl₅ / pSbCl₃
pCl₂ = 3.5 × 10⁻⁴ × 0.17 / 0.22
pCl₂ = 2.7 × 10⁻⁴ bar