<span>a pure substance that can be separated into different elements by chemical means</span>
The given question is incomplete. The complete question is:
When 136 g of glycine are dissolved in 950 g of a certain mystery liquid X, the freezing point of the solution is 8.2C lower than the freezing point of pure X. On the other hand, when 136 g of sodium chloride are dissolved in the same mass of X, the freezing point of the solution is 20.0C lower than the freezing point of pure X. Calculate the van't Hoff factor for sodium chloride in X.
Answer: The vant hoff factor for sodium chloride in X is 1.9
Explanation:
Depression in freezing point is given by:
= Depression in freezing point
= freezing point constant
i = vant hoff factor = 1 ( for non electrolyte)
m= molality =

Now Depression in freezing point for sodium chloride is given by:
= Depression in freezing point
= freezing point constant
m= molality =


Thus vant hoff factor for sodium chloride in X is 1.9
Answer:
NaOBr (or) Na⁺ ⁻OBr
Explanation:
The Oxo-Acids of Bromine are as follow,
Hypobromous Acid = HOBr
Bromous Acid = HOBrO
Bromic Acid = HBrO₃
Perbromic Acid = HBrO₄
When these acids are converted to their conjugate bases their names are as follow,
Hypobromite = ⁻OBr
Bromite = ⁻OBrO
Bromate = ⁻OBrO₂
Perbromate = ⁻OBrO₃
According to rules, the positive part of ionic compound is named first and the negative part is named second. So, Sodium Hypobromite has a chemical formula of Na⁺ ⁻OBr or NaOBr.
Answer: silicon Si, Germanium GE
Explanation:
Answer : The pressure of gas will be, 3.918 atm and the combined gas law is used for this problem.
Solution :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 3 atm
= final pressure of gas = ?
= initial volume of gas = 1.40 L
= final volume of gas = 0.950 L
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get the final pressure of gas.


Therefore, the pressure of gas will be, 3.918 atm and the combined gas law is used for this problem.