The most abundant carbon isotope is carbon-12.
The relative atomic mass of carbon is 12.011, which is extremely close to 12.0. This means that the masses C-13, and C-14 are practically negligible when contributing to the relative atomic mass of carbon.
the C-12 isotope makes up 98.9% of carbon atoms, C-13 makes up 1.1% of carbon atoms, and C-14 makes up just a trace of carbon atoms as they are found in nature.
Answer:Hence, the bond length in HCl is 125 pm.
Explanation:
Bond length : It is an average distance between the nuclei of two bonded atoms in a molecule.
Also given that bond length is the distance between the centers of two bonded atoms. on the potential energy curve, the bond length is the inter-nuclear distance between the two atoms when the potential energy of the system reaches its lowest value. Beyond this if atoms come closer to each other then their will be repulsion between them.
So, the bond length between the Hydrogen and Chlorine atom in HCl molecule is :

Hence, the bond length in HCl is 125 pm.
Answer:
1. an educated guess
2. data
3. what changes in experiment
4. what stays the same in both groups
5. the group where nothing changes, normal
6. group with independent variable, what's being tested
According to law of definite proportion, for a compound, elements always combine in fixed ratio by mass.
The formula of compound remains the same, let it be a_{x}b_{y} where, a and b are two different elements.
Since, the ratio of mass remains the same , calculate the ratio of masses of element a and b in both cases
\frac{a}{b}=\frac{15}{35}=\frac{10}{y}
rearranging,
y=\frac{10\times 35}{15}=23.3
Thus, mass of b produced will be 23.3 g.