The value of x is 2 because the centroid of the triangle divides each median in the ratio of 2:1 option (C) is correct.
<h3>What is the triangle?</h3>
The triangle can be defined as a three-sided polygon in geometry, and it consists of three vertices and three edges. The sum of all the angles inside the triangle is 180°.
The question is incomplete.
The complete question is in the picture, please refer to the attached picture.
We have:
RQ = 3x+2 ,QN = 2x and SM=3x
In the figure, the TM, Rn, and SL are medians of the triangle SRT and Q is the centroid.
The centroid of the triangle divides each median in the ratio 2:1
RQ/QN = 2/1
(3x+2)/2x = 2/1
After solving:
3x + 2 = 4x
x = 2
Thus, the value of x is 2 because the centroid of the triangle divides each median in the ratio of 2:1 option (C) is correct.
Learn more about the triangle here:
brainly.com/question/25813512
#SPJ1
Answer:
8 * (7 + 4)
See process below
Step-by-step explanation:
We start by writing each number in PRIME factor form:
56 = 2 * 2 * 2 * 7
32 = 2 * 2 * 2 * 2 * 2
Notice that the factors that are common to BOTH numbers are 2 * 2 * 2 (the product of three factors of 2).Therefore we see that the greatest common factor for the given numbers is : 2 * 2 * 2 = 8
Using this, we can write the two numbers as the product of this common factor (8) times the factors that are left on each:
56 = 8 * 7
32 = 8 * 2 * 2 = 8 * 4
We can then use distributive property to "extract" that common factor (8) from the given addition as shown below:
56 + 32
8 * 7 + 8 * 4
8 * (7 + 4)
8 * (11)
88
Answer:
- (0, 26)
- (-6.5, 0)
Step-by-step explanation:
Turn the equation into slope-intercept form [ y = mx + b ].
y - 6 = 4(x + 5)
y - 6 = 4x + 20
y = 4x + 26
We know that b = y-intercept for the y-intercept is 26.
Substitute 0 for y to find the x intercept.
0 = 4x + 26
-26 = 4x
-6.5 = x
Best of Luck!
Answer:
5.1
Step-by-step explanation:
you need to work backwards.
so do 17.5 + 8 then divide by 5 to get 5.1
i hope this helps :)
Answer:
She made a mistake in Step 7.
Step-by-step explanation:
Step 1 through 6 are correct. Only from Step 6 to Step 7 the problem comes in: both sides of the equation are multiplied by x, however the x on the left side, by error, becomes 1. The correct state in Step 7 should look like this:
