It 1224 12 thanks hope I hlpjd vfXbkn
Answer:
x = ±6
Step-by-step explanation:
-x^2 = - 36
Divide each side by -1
x^2 = 36
Take the square root of each side
sqrt(x^2) = sqrt(36)
x = ±6
To do this, you got to square 256.
The square root of 256 is 16.
Therefore, there are 16 small squares on each edge of the mosaic.
Kinda proof:
o o o o O
o o o o O
o o o o O
o o o o O
o o o o O
25 squares. Square root is 5. 5 along each edge. My work shares same concept.
Extremely unnecessary proof:
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
There are 256 squares, and you can count 16 on each edge. this shows 16 times 16, or 16 squared, which is 256.
The formula subject to q is 
Explanation:
The given formula is 
We need to determine the formula subject to q.
<u>The formula subject to q:</u>
The formula subject to q can be determined by solving the formula for q.
Let us solve the formula.
Thus, we have;

Subtracting both sides by 5p, we have;

Dividing both sides by 5, we get;

Thus, the formula subject to q is 
The answer would be 6fg^3+5f^2g^2+f^3g-7