Greater than or equal to 8
Answer:
1)
Independent variable: no. of passengers
Dependent variable: Average speed
2)
Inverse relationship
Fuel consumption increases as speed decreases
3)
Direct relationship
As the no. of passengers increase, fuel consumption also increases
4)
As the no. of passengers increase:
* speed decreases
* Fuel consumption increases
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π → A = π - (B + C)
→ B = π - (A + C)
→ C = π - (A + B)
Use Sum to Product Identity: sin A - sin B = 2 cos [(A + B)/2] · sin [(A - B)/2]
Use the following Cofunction Identity: cos (π/2 - A) = sin A
<u>Proof LHS → RHS:</u>
LHS: sin A - sin B + sin C
= (sin A - sin B) + sin C




![\text{Factor:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\bigg]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cqquad%202%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5B%20%5Csin%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B2%7D%5Cbigg%29%2B%5Ccos%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5D)
![\text{Given:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)\bigg]\\\\\\.\qquad \qquad =2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi}{2} -\dfrac{(A+B)}{2}\bigg)\bigg]](https://tex.z-dn.net/?f=%5Ctext%7BGiven%3A%7D%5Cqquad%202%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5B%20%5Csin%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B2%7D%5Cbigg%29%2B%5Ccos%20%5Cbigg%28%5Cdfrac%7B%5Cpi%20-%28A%2BB%29%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%3D2%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5B%20%5Csin%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B2%7D%5Cbigg%29%2B%5Ccos%20%5Cbigg%28%5Cdfrac%7B%5Cpi%7D%7B2%7D%20-%5Cdfrac%7B%28A%2BB%29%7D%7B2%7D%5Cbigg%29%5Cbigg%5D)
![\text{Cofunction:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)\bigg]](https://tex.z-dn.net/?f=%5Ctext%7BCofunction%3A%7D%5Cqquad%202%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5B%20%5Csin%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B2%7D%5Cbigg%29%2B%5Csin%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B2%7D%5Cbigg%29%5Cbigg%5D)
![\text{Sum to Product:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ 2\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad \qquad =4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cqquad%202%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5B%202%5Csin%20%5Cbigg%28%5Cdfrac%7BA%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BB%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D4%5Csin%20%5Cbigg%28%5Cdfrac%7BA%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BB%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29)

Answer:
give me more information on this
On Monday she made 50 throws.
On Tuesday she made 56 throws.
a) The increase is just how much more she made the next day.
56 - 50 = 6
She had an increase of 6 free throws.
b) To find the percent increase, all you do is divide the two numbers.
56/50 = 1.12
To change that into a percentage, either multiply it by 100 or move the decimal point two places to the right.
1.12 × 100 = 112
She had a 112% increase in her free throws.
The answer is:
D. 6; 112%