Starting more simply, if we wanted to know how many students like pink in general, that's 68/100. We could do that for each single category and the fractions would add together to equal 1. Now say we wanted to know something about that 68/100 people. That 68 is our new 100%, or another way of looking at it is if we take however many people like pink and don't like black and those that do like black, they will equal 68/68.
The number of people that like pink but don't like black is 41/68 and those that like pink and black are 27/68. 27+41=68 For the question of your problem it is asking about those that do not like pink which you can tell from the table or use from my saying 68/100 like pink is 32. Now you can split that into those that do or don't like black, and the two results will equal 32/32.
Answer:
C
Step-by-step explanation:
Given
V = lwh ( isolate w by dividing both sides by lh )
= w → C
The answer for that is .. 17?
Answer:
2.29 ft of side length and 1.14 height
Step-by-step explanation:
a) Volume V = x2h, where x is side of square base and h is hite.
Then surface area S = x2 + 4xh because box is open.
b) From V = x2h = 6 we have h = 6/x2.
Substitude in formula for surface area: S = x2 + 4x·6/x2, S = x2 + 24/x.
We get S as function of one variable x. To get minimum we have to find derivative S' = 2x - 24/x2 = 0, from here 2x3 - 24 = 0, x3 = 12, x = (12)1/3 ≅ 2.29 ft.
Then h = 6/(12)2/3 = (12)1/3/2 ≅ 1.14 ft.
To prove that we have minimum let get second derivative: S'' = 2 + 48/x3, S''(121/3) = 2 + 48/12 = 6 > 0.
And because by second derivative test we have minimum: Smin = (12)2/3 + 4(12)1/3(12)1/3/2 = 3(12)2/3 ≅ 15.72 ft2