Answer:
Step-by-step explanation:
1) P= Area of Circle/ Area of large rectangle
Area of the circle = pi·r² = pi·2²=4 pi ft.²
Area of large rectangle= l·w -12·10 =120 ft.²
P = 4pi/120 rewrite 120 as 4·30
P= 4 pi/4*30 = pi/30 = 3.14/40 ≈ .1047 ≈10% (because .1047·100 =10.47≅10)
2) P = Area of smaller rectangle/ Area of large rectangle
Area of smaller rectangle = l·w = 2·4 =8 ft.²
Area of large rectangle=l·w = 12·10=120 ft²
P= 8/120 ≅ .0666≅ 7% (because .0666·100 =6.66≅7)
3) P= Not the circle or smaller rectangle/ Area of large rectangle
Not the circle or smaller rectangle area
= Area of large rectangle - Area of circle -Area of smaller rectangle
= 120 -4·pi -8 = 120 - (4· 3.14) -8 = 99.4362939 ft²
Area of large rectangle = l·w = 12·10 =120 ft²
P = 99.4362939 /120 ≅ .8286 ≅83% (because .8286·100 =82.86≅83)
The answer would have to be
D
Answer:
5. 1
6. Kari is not correct.
Step-by-step explanation:
5. All like terms can be combined. There will be one term remaining after they are.
___
6. The appropriate factoring is x(x+1). This is not the same as x(2x+1).
In order to show equivalence, you need to show that the expressions produce the same result for as many different values of x as the degree of the expression plus 1. That is, you'd need to show equivalence for <em>3 different values of x</em>, as a minimum for this second-degree expression.
When you bring something up or move something down, you have to multiply the exponent by -1. So in this case, you are bringing up the exponent. Multiply 5 by -1 and your answer should be x^5/1.