Answer:
Mass = 1350kg
Explanation:
Given the following data;
Velocity = 23m/s
Momentum = 31,050 kg·m/s.
To find the mass of car;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
Momentum = mass * velocity
Substituting into the equation, we have
31,050 = mass*23
Mass = 31,050/23
Mass = 1350kg
Therefore, the mass of the car is 1350 kilograms.
The maximum allowable torque must correspond to the allowable shear stress for maximization. To solve this, we use the torsion formula:
Max. Allowable Shear Stress = Maximum Torque ÷ Cross-Sectional Area
8 x 10^6 Pa = Maximum Torque ÷ pi*(d/2)²
Maximum Torque = 8 x 10^6 Pa * pi*(0.06/2)² m²
Maximum Torque = 22,619.47 J or
Maximum Torque = 22.62 kJ
As for the second question, I have no reference figure so I am unable to answer it. I hope I was still able to help you, though.
B) at the poles of the magnet
<span>a) 13 seconds
b) 130 m/s
The formula for the distance an object moves while under constant acceleration is d = 1/2AT^2. So let's define d as 830 m, A as 9.8m/s^2, and solve for T
830 m = 1/2 9.8 m/s^2 T^2
830 m = 4.9 m/s^2 T^2
Divide both sides by 4.9 m/s^2
169.3878 s^2 = T^2
Take the square root of both sides
13.01491 s = T
Since we only have 2 significant figures, round the result to 13 seconds which is the answer to the first part of the question. To find out how fast the marble is moving, just multiply T and A together
13 s * 9.8 m/s^2 = 127.4 m/s
Since we only have 2 significant figures, round the result to 130 m/s.</span>
Answer:
8.33*10^-16 Watt
Explanation:
Given that
Length of the rod, l = 2 m,
Area of the rod, A = 2 x 2 mm² = 4*10^-6 m²
resistivity of the rod, p = 6*10^-8 ohm metre,
Potential difference of the rod, V = 0.5 V
Let R be the resistance of the rod, then
R = p * l / A
R = (6*10^-8 * 2) / (4*10^-6)
R = 3*10^14 ohm
Heat generated per second = V² / R Heat = (0.5)² / (3*10^14)
Heat = 0.25 / 3*10^14
Heat = 8.33*10^-16 Watt
Therefore, the rate at which heat is generated is 8.33*10^-16 Watt