Answer:
Part a)

Part b)

So this speed is independent of the mass of the rider
Explanation:
Part a)
By force equation on the rider at the position of the hump we can say

now we will have


now we have



Part b)
At the top of the loop if the minimum speed is required so that it remains in contact so we will have

at minimum speed




So this speed is independent of the mass of the rider
Answer: 343 m/s. The sound wave has a frequency of. 436 Hz. What is the period of the wave? T = = 436 Hz. = 2.29x10-3 s. C. What is the wave's wavelength? To halve
Explanation:
Answer:
This would be traveling at the lower reaches.
Explanation:
A river would be traveling the fastest at the upper reaches and it becomes slower at the middle reaches and the slowest at the lower reaches. A place where water flows fast in a river is where the width is narrow and the bottom is steep. (This is just examples incase you would like to keep notes).
- initial velocity=u=24m/s
- Acceleration=a=4m/s^2
- Distance=s=96m
- Final velocity=v
Using 3rd equation of kinematics







I think it false. Sorry if i'm wrong.