They become old and explode.
Answer:
1keff=1k1+1k2
see further explanation
Explanation:for clarification
Show that the effective force constant of a series combination is given by 1keff=1k1+1k2. (Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination. Also, each spring must exert the same force. Do you see why?
From Hooke's law , we know that the force exerted on an elastic object is directly proportional to the extension provided that the elastic limit is not exceeded.
Now the spring is in series combination
F
e
F=ke
k=f/e.........*
where k is the force constant or the constant of proportionality
k=f/e
............................1
also for effective force constant
divide all through by extension
1) Total force is
Ft=F1+F2
Ft=k1e1+k2e2
F = k(e1+e2) 2)
Since force on the 2 springs is the same, so
k1e1=k2e2
e1=F/k1 and e2=F/k2,
and e1+e2=F/keq
Substituting e1 and e2, you get
1/keq=1/k1+1/k2
Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination.
Answer:
D reliability
Explanation:
I think am collect but if you recognize that am wrong just collect me then
The centripetal force exerted on the automobile while rounding the curve is 
<u>Explanation:</u>
given that

Objects moving around a circular track will experience centripetal force towards the center of the circular track.

Answer:
Part 1) Voltage in secondary windings is 61.08 Volts
Part 2) Current in secondary windings is 0.53 Amperes
Explanation:
The potential developed in the primary and secondary winding of a transformer are related as

where
Np no of turns in primary coil
Ns no of turns in secondary coil
Vp Voltage of turns in primary coil
Vs Voltage of turns in secondary coil
Applying values in the formula we get

Part 2)
Using Ohm's law the current is given by
