Answer:
d) 2Fr
Explanation:
We know that the work done in moving the charge from the right side to the left side in the k shell is W = ∫Fdr from r = +r to -r. F = force of attraction between nucleus and electron on k shell. F = qq'/4πε₀r² where q =charge on electron in k shell -e and q' = charge on nucleus = +e. So, F = -e × +e/4πε₀r² = -e²/4πε₀r².
We now evaluate the integral from r = +r to -r
W = ∫Fdr
= ∫(-e²/4πε₀r²)dr
= -∫e²dr/4πε₀r²
= -e²/4πε₀∫dr/r²
= -e²/4πε₀ × -[1/r] from r = +r to -r
W = e²/4πε₀[1/-r - 1/+r] = e²/4πε₀[-2/r} = -2e²/4πε₀r.
Since F = -e²/4πε₀r², Fr = = -e²/4πε₀r² × r = = -e²/4πε₀r and 2Fr = -2e²/4πε₀r.
So W = -2e²/4πε₀r = 2Fr.
So, the amount of work done to bring an electron (q = −e) from right side of hydrogen nucleus to left side in the k shell is W = 2Fr
The spectrum of light from the moon should very strongly resemble the spectrum of sunlight. The reason is that any light from the moon started out from the sun. Any difference in their spectra is only due to the moon absorbing more of some wavelengths and less of others. But since the moon appears colorless gray, we don't expect any particular colors to be strongly absorbed, otherwise the moon would look to be the colors of the light that's left.
Answer:
There are no examples but this should be evaporation
Explanation:
It mimics the movement of the waves
F=nmv
where;
n=no. of bullets = 1
m=mass of bullets=2g *10^-3
V=velocity of bullets200m/sec
F=1
loss in Kinetic energy=gain in heat energy
1/2MV^2=MS∆t
let M council M
=1/2V^2=S∆t
M=2g
K.E=MV^2/2
=(2*10^-3)(200)^2/2
2 councils 2
2*10^-3*4*10/2
K.E=40Js
H=mv∆t
(40/4.2)
40Js=40/4.2=mc∆t
40/4.2=2*0.03*∆t
=158.73°C