Answer:
gas is dioatomic
T_f = 330.0 K

Explanation:
Part 1
below equation is used to determine the type Gas by determining
value

where V_i and V_f is initial and final volume respectively
and P_i and P_f are initial and final pressure


\gamma = 1.38
therefore gas is dioatomic
Part 2
final temperature in adiabatic process is given as
](https://tex.z-dn.net/?f=T_f%20%3D%20T_i%2A%5B%5Cfrac%7Bv_i%7D%7BV_f%7D%5D%28%5E%5Cgamma-1%29)
substituing value to get final temperature
![T_f = 260*[\frac{151}{80.6}]^ {(1.38-1)}](https://tex.z-dn.net/?f=T_f%20%3D%20260%2A%5B%5Cfrac%7B151%7D%7B80.6%7D%5D%5E%20%7B%281.38-1%29%7D)
T_f = 330.0 K
Part 3
determine number of moles by using following formula



Answer: 6.12 kg
Explanation:
Since Mass of ball = ? (let the unknown value be Z)
Acceleration due to gravity, g= 9.8m/s^2
Height, h = 1.5 metres
Gravitational potential energy GPE = 90J
Gravitational potential energy depends on the weight of the ball, the action of gravity and height.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
90J = Z x 9.8m/s^2 x 1.5m
90 = Z x 14.7
Z = 90/14.7
Z = 6.12 kg
Thus, the bowling ball weigh 6.12 kilograms
The equations are analogous to that for linear movement:
acceleration = (final velocity - initial velocity) / time
acceleration = (3000 rpm - 0 rpm) / 2.0 s
a) acceleration = 1500 rpm/s or 25 rp(s^2)
For the displacement
displacement = initial velocity*time + 0.5*acceleration*time^2
displacement = (0)*(2 s) + (0.5)(25 rps^2)*(2 s)^2
b) displacement = 50 revolutions
Answer:
The moon is 400x smaller but it's also 400x closer so it looks the same size even though it's not
Explanation:
there many things you could do, one is try getting a cooling system, another thing is its extramly hot and you may need to tunr off your car to prevent the engine from over heating.