Answer:
Explanation:
The "traditional" form of Coulomb's law, explicitly the force between two point charges. To establish a similar relationship, you can use the integral form for a continuous charge distribution and calculate the field strength at a given point.
In the case of moving charges, we are in presence of a current, which generates magnetic effects that in turn exert force on moving charges, therefore, no longer can consider only the electrostatic force.
The state of matter that the particles move independently of one another with very little attraction is, I believe, gas
Answer:
Towards the west
Explanation:
Magnetic force is the interaction between a moving charged particle and a magnetic field.
Magnetic force is given as
F = q (V × B)
Where F is the magnetic force
q is the charge
V is the velocity
B is the magnetic field
V×B means the cross product of the velocity and the magnetic field
NOTE:
i×i=j×j×k×k=0
i×j=k. j×i=-k
j×k=i. k×j=-i
k×i=j. i×k=-j
So, if the electron is moving southward, then, it implies that the velocity of it motion is southward, so the electron is in the positive z-direction
Also, the electron is curved upward due to the magnetic field, this implies that the force field is directed up in the positive y direction.
Then,
V = V•k
F = F•j
Then, apply the theorem
F •j = q ( V•k × B•x)
Let x be the unknown
From vector k×i =j.
This shows that x = i
Then, the magnetic field point in the direction of positive x axis, which is towards the west
You can as well use the Fleming right hand rule
The thumb represent force
The index finger represent velocity
The middle finger represent field