1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexandra [31]
3 years ago
14

Based on the trend in valence electrons across periods for main-group

Physics
2 answers:
Andreyy893 years ago
6 0

Answer: 4

Explanation: a p e x

Sergeeva-Olga [200]3 years ago
4 0

Answer: 4

Explanation:

You might be interested in
Suppose you want to to double a copper wire's resistance. To what temperature, in degrees Celsius, must you raise it if it is or
sleet_krkn [62]

Answer:

T=280.41 °C

Explanation:

Given that

At T= 24°C Resistance =Ro

Lets take at temperature T resistance is 2Ro

We know that resistance R given as

R= Ro(1+αΔT)

R-Ro=Ro αΔT

For copper wire

α(coefficient of Resistance) = 3.9 x 10⁻³ /°C

Given that at temperature T

R= 2Ro

Now by putting the values

R-Ro=Ro αΔT

2Ro-Ro=Ro αΔT

1 = αΔT

1 = 3.9 x 10⁻³ x ΔT

ΔT = 256.41 °C

T- 24 = 256.41 °C

T=280.41 °C

So the final temperature is 280.41 °C.

8 0
3 years ago
State coulombs law in word​
amid [387]
<h2><em>state coulombs law in word</em></h2>

  • <em>: a statement in physics: <u>the force of attraction or repulsion acting along a straight line between two electric charges is directly proportional to the product of the charges and inversely to the square of the distance between </u></em><em><u>them</u></em>

<em><u>hope </u></em><em><u>it</u></em><em><u> helps</u></em>

<em><u>#</u></em><em><u>c</u></em><em><u>a</u></em><em><u>r</u></em><em><u>r</u></em><em><u>y</u></em><em><u> </u></em><em><u>on</u></em><em><u> learning</u></em>

3 0
3 years ago
A pendulum of length L=36.1 cm and mass m=168 g is released from rest when the cord makes an angle of 65.4 degrees with the vert
pychu [463]

(a) -0.211 m

At the beginning the mass is displaced such that the length of the pendulum is L = 36.1 cm and the angle with the vertical is

\theta=65.4^{\circ}

The projection of the length of the pendulum along the vertical direction is

L_y = L cos \theta = (36.1 cm)(cos 65.4^{\circ})=15.0 cm

the full length of the pendulum when the mass is at the lowest position is

L = 36.1 cm

So the y-displacement of the mass is

\Delta y = 15.0 cm - 36.1 cm = -21.1 cm = -0.211 m

(b) 0.347 J

The work done by gravity is equal to the decrease in gravitational potential energy of the mass, which is equal to

\Delta U = mg \Delta y

where we have

m = 168 g = 0.168 kg is the mass of the pendulum

g = 9.8 m/s^2 is the acceleration due to gravity

\Delta y = 0.211 m is the vertical displacement of the pendulum

So, the work done by gravity is

W=(0.168 kg)(9.8 m/s^2)(0.211 m)=0.347 J

And the sign is positive, since the force of gravity (downward) is in the same direction as the vertical displacement of the mass.

(c) Zero

The work done by a force is:

W=Fd cos \theta

where

F is the magnitude of the force

d is the displacement

\theta is the angle between the direction of the force and the displacement

In this situation, the tension in the string always points in a radial direction (towards the pivot of the pendulum), while the displacement of the mass is tangential (it follows a circular trajectory): this means that the tension and the displacement are always perpendicular to each other, so in the formula

\theta=90^{\circ}, cos \theta = 0

and so the work done is zero.

5 0
3 years ago
A 0.50-kg bomb is sliding along an icy pond (frictionless surface) with a velocity of 2.0 m/s to the west. The bomb explodes int
nevsk [136]

Answer:

2.667m/s to the north and 3.333 m/s to the west

Explanation:

According to law of momentum conservation, the total momentum should be conserved before and after the explosion.

Before the explosion, the momentum was

0.5*2 = 1 kg m/s to the west

Therefore the total momentum after the explosion should be the same horizontally and vertically.

Vertically speaking, it was 0 before the explosion. After the explosion:

0.2*4 + 0.3v = 0

0.3v = -0.8

v = -0.8/0.3 = -2.667 m/s

So the vertical component of the 0.3kg piece is 2.667m/s to the north

Horizontally speaking, since the 0.2kg-piece doesn't move west or east post-explosion:

0.2*0 + 0.3V = 1

0.3V = 1

V = 1/0.3 = 3.333 m/s

So the horizontal component of the 0.3kg piece is 3.333 m/s to the west

5 0
3 years ago
Read 2 more answers
What will happen to the astronaut when the jets produce these four forces: 10N, 10N, 9N, 9N?
sukhopar [10]
The astronaut would go the opposite direction due to Newton’s third law of -10N, -10N, -9N, -9N

Let me know if this helped you, please rank this was the brainlist answer if possible, thanks!
6 0
3 years ago
Other questions:
  • Consider a 145 gram baseball being thrown by a pitcher. The ball approaches the batter with a speed of 44 m/s. The batter swings
    8·1 answer
  • A box is given a push so that it slides across the floor. how far will it go given that the How far will it go, given that the c
    15·1 answer
  • This demonstrates which of the following?
    14·2 answers
  • Calculate the gravitational potential energy a 1kg ball has when thrown 3 m into the air. The gravitational field strength on ea
    10·1 answer
  • For the circuit shown, which of the following is true?
    5·2 answers
  • What are some drawbacks of electron microscopes? 3. If an object being viewed under the phase-contrast microscope has the same r
    7·1 answer
  • As an admirer of Thomas Young, you perform a double-slit experiment in his honor. You set your slits 1.09 mm apart and position
    11·1 answer
  • A stone with a mass of 0.70 kg is attached to one end of a string 0.70 m long. The string will break if its tension exceeds 65.0
    5·1 answer
  • Light travels in a transparent material at 2.5 x 10 m/s. Find the index of refraction of the
    8·1 answer
  • "She finished the sprint with the speed of a cheetah." This statement represents which of the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!