1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Papessa [141]
3 years ago
12

Assume that the speed of light in a vacuum has the hypothetical value of 18.0 m/s. A car is moving at a constant speed of 14.0 m

/s along a straight road. A home owner sitting on his porch sees the car pass between two telephone poles in 6.76 s. How much time does the driver of the car measure for his trip between the poles
Physics
1 answer:
denis23 [38]3 years ago
8 0

Answer:

4.245s

Explanation:

Given that,

Hypothetical value of speed of light in a vacuum is 18 m/s

Speed of the car, 14 m/s

Time given is 6.76 s, and we're asked to find the observed time, T

The relationship between the two times can be given as

T = t / √[1 - (v²/c²)]

The missing variable were looking for is t, and we can find it if we rearrange the formula and make t the subject

t = T / √[1 - (v²/c²)]

And now, we substitute the values and insert into the equation

t = 6.76 * √[1 - (14²/18²)]

t = 6.76 * √[1 - (196/324)]

t = 6.76 * √(1 - 0.605)

t = 6.76 * √0.395

t = 6.76 * 0.628

t = 4.245 s

Therefore, the time the driver measures for the trip is 4.245s

You might be interested in
Please answer this fast
Natali5045456 [20]

the answer choice will be A because they travel at the same speed through only light not one material.

3 0
3 years ago
Read 2 more answers
2) Two ice skaters have masses m1 and m2 and are initially stationary. Their skates are identical. They push against one another
worty [1.4K]

Answer:

m_1 / m_2 = sqrt (1 / 2)

Explanation:

Given:

- Initial velocity of both skaters V_i = 0

- Velocity of skater 1 after push = V_1

- Velocity of skater  after push = V_2

- Distance traveled by skater 1 = s_1

- Distance traveled by skater 2 = s_2

- s_1 = 2*s_2

- Accelerations of both skaters to halt is equal

Find:

What is the ratio m1/m2 of their masses

Solution:

- Apply conservation of momentum for two skaters just before and after the push as follows:

                                              P_i = P_f

                                  0 = m_1*V_1 - m_2*V_2

- Evaluate:                 m_1 / m_2 = ( V_2 / V_1 )

- Apply Conservation of Energy on both skaters as follows:

- Skater 1:

                               0.5*m_1*V_1^2 = u_k*m_1*g*s_1

-Simplify:                      0.5*V_1^2 = u_k*g*(2*s_2)

- Skater 2:

                               0.5*m_2*V_2^2 = u_k*m_2*g*s_2

-Simplify:                      0.5*V_2^2 = u_k*g*s_2

- Divide the two energy equations for skaters:

                                    (V_1 / V_2)^2 = 2

                                    (V_2 / V_1)^2 = 1 / 2

- simplify:                     (V_2 / V_1) = sqrt (1 / 2)

-Hence from earlier momentum conservation results:

                                  m_1 / m_2 = ( V_2 / V_1 ) = sqrt (1 / 2)

6 0
3 years ago
Consider the two moving boxcars in Example 5. Car 1 has a mass of m1 = 65000 kg and a velocity of v01 = +0.80 m/s. Car 2 has a m
Amiraneli [1.4K]

Answer:

1.034m/s

Explanation:

We define the two moments to develop the problem. The first before the collision will be determined by the center of velocity mass, while the second by the momentum preservation. Our values are given by,

m_1 = 65000kg\\v_1 = 0.8m/s\\m_2 = 92000kg\\v_2 = 1.2m/s

<em>Part A)</em> We apply the center of mass for velocity in this case, the equation is given by,

V_{cm} = \frac{m_1v_1+m_2v_2}{m_1+m_2}

Substituting,

V_{cm} = \frac{(65000*0.8)+(92000*1.2)}{92000+65000}

V_{cm} = 1.034m/s

Part B)

For the Part B we need to apply conserving momentum equation, this formula is given by,

m_1v_1+m_2v_2 = (m_1+m_2)v_f

Where here v_f is the velocity after the collision.

v_f = \frac{m_1v_1+m_2v_2}{m_1+m_2}

v_f = \frac{(65000*0.8)+(92000*1.2)}{92000+65000}

v_f = 1.034m/s

8 0
4 years ago
Calculate delta g for the reaction if the partial pressures of the initial mixture are pcl5 = .0029 atm, pcl3 = .27 atm, and pcl
AnnyKZ [126]

Answer: equation for the reaction is given below

PCL2+PCL3=PCL5

Where pcl2=0.40atm,pcl3=0.27atm

Pcl5=0.0029atm

Using ∆G=-RTin(PCL5/PCl2*PCL3)

Where R=8.314J/K/mol and T=298K

∆G=-8.314*298in(0.0029/0.40*.27)

∆G=8962.6J/mol

Explanation:

7 0
4 years ago
You wad up a piece of paper and throw it into the wastebasket. How far will
astraxan [27]

Answer:

Since the paper is wadded up tight, and if there's any

air resistance left we assume there isn't any, it might

just as well be a stone that's tossed.  This is just a

stripped down projectile situation.

You said "an angle of 36 degrees", but you didn't say relative

to what.  I'll assume that it's 36 degrees above horizontal, and

now I'll proceed to answer the question with the information that

I just gave myself.

-- The vertical component of the velocity is  1.4 sin(36)

                                                                        = 0.823 m/s up.

-- The projectile rises for (0.823/9.8) second, runs out of gas,

and then falls for another (0.823/9.8) second to its original height.

So it's in the air for

                                  2 (0.823/9.8) = 0.168 second

                                                            (not very long at all)

-- The horizontal component of the velocity is  1.4 cos(36)

                                                                           = 1.133 m/s  

                                                             and it doesn't change.

-- During the 0.168 second that it's in the air,

the wad travels horizontally

                                              (0.168 s) x (1.133 m/s)

                                          =            0.19 meter

                                              (19 cm, ~ 7.5 inches)

If you find my mistake on this one, please please tell me.  

As of now, it looks like with that velocity at that angle, your

paper wad only makes it 7.5 inches from your hand into the can.

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • A ball that has a mechanical energy of 65 J has 12 J of kinetic energy. The ball has J of potential energy.
    14·2 answers
  • A rod of very small diameter with a mass 2m and length 3L is placed along the xaxis with one end at the origin. An identical rod
    9·1 answer
  • Edit question A 37-cm-long wire of linear density 18 g/m vibrating at its second mode, excites the third vibrational mode of a t
    11·1 answer
  • LC CIRCUIT: A 20.00-F capacitor is fully charged by a 100.00-V battery, then disconnected from the battery and connected in seri
    12·1 answer
  • At which position is the northern hemisphere experiencing winter?
    8·1 answer
  • 27N-(u)(14kg)(9.8m/s^2)=0
    12·1 answer
  • You design an experiment to see how light effects plant growth. You put one plant in a room with no
    9·2 answers
  • What kind of friction is occurring between a pencil and desktop when you flick the pencil?
    12·1 answer
  • exhibit 6-5 the weight of items produced by a machine is normally distributed with a mean of 8 ounces and a standard deviation o
    9·1 answer
  • what happens to light when it falls upon a material that has a natural frequency equal to the frequency of the light?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!