Answer:
2 per s
Explanation:
divid 40 and 20 it gives you = 2
Three complete orders on each side of the m=0 order can be produced in addition to the m=0 order.
The ruling separation is d=1/(470mm-1)

Diffraction lines occurs at an angle θ such that dsin=mλ,when λ is the wavelength and m is an integer.
Notice that for a given order,the line associated with a long wavelength is produced at a greater angle than the line associated with shorter wavelength.
we take λ to be the longest wavelength in the visible spectrum (538nm) and find the greatest integer value of m such that θ is less than 90°.
That is,find the greater integer value of m for which mλ<d.
since,d/λ

There are three complete orders on each side of the m=0 order.
The second and third orders overlap.
learn more about diffraction from here: brainly.com/question/28168352
#SPJ4
<span>f(x) = 5.05*sin(x*pi/12) + 5.15
First, you need to determine the period of the function. The period will be the time interval between identical points on the sinusoidal function. For this problem, the tide is rising and at 5.15 at midnight for two consecutive days. So the period is 24 hours. Over that 24 hour period, we want the parameter passed to sine to range from 0 to 2*pi. So the scale factor for x will be 2*pi/24 = pi/12 which is approximately 0.261799388. The next thing to note is the magnitude of the wave. That will simply be the difference between the maximum and minimum values. So 10.2 ft - 0.1 ft = 10.1 ft. And since the value of sine ranges from -1 to 1, we need to divide that magnitude by 2, so 10.1 ft / 2 = 5.05 ft.
So our function at this point looks like
f(x) = 5.05*sin(x*pi/12)
But the above function ranges in value from -5.05 to 5.05. So we need to add a bias to it in order to make the low value equal to 0.1. So 0.1 = X - 5.05, 0.1 + 5.05 = X, 5.15 = X. So our function now looks like:
f(x) = 5.05*sin(x*pi/12) + 5.15
The final thing that might have been needed would have been a phase correction. With this problem, we don't need a phase correction since at X = 0 (midnight), the value of X*pi/12 = 0, and the sine of 0 is 0, so the value of the equation is 5.15 which matches the given value of 5.15. But if the problem had been slightly different and the height of the tide at midnight has been something like 7 feet, then we would have had to calculate a phase shift value for the function and add that constant to the parameter being passed into sine, making the function look like:
f(x) = 5.05*sin(x*pi/12 + C) + 5.15
where
C = Phase correction offset.
But we don't need it for this problem, so the answer is:
f(x) = 5.05*sin(x*pi/12) + 5.15
Note: The above solution assumes that angles are being measured in radians. If you're using degrees, then instead of multiplying x by 2*pi/24 = pi/12, you need to multiply by 360/24 = 15 instead, giving f(x) = 5.05*sin(x*15) + 5.15</span>
Answer:
Magnetic force, 
Explanation:
Given that,
A beryllium-9 ion has a positive charge that is double the charge of a proton, 
Speed of the ion in the magnetic field, 
Its velocity makes an angle of 61° with the direction of the magnetic field at the ion's location.
The magnitude of the field is 0.220 T.
We need to find the magnitude of the magnetic force on the ion. It is given by :

So, the magnitude of magnetic force on the ion is
.
The water creates less friction between your foot and the ground