The grandfather clock will now run slow (Option A).
<h3>What is Time Period of an oscillation?</h3>
- The time period of an oscillation refers to the time taken by an object to complete one oscillation.
- It is the inverse of frequency of oscillation; denoted by "T".
Now,
, where L is the length and g is the gravitational constant, is the formula for a pendulum's period. - The period will increase as one climbs a very tall mountain because g will slightly decrease.
- Due to this and the previous issue, the clock runs slowly and it seems that one second is longer than it actually is.
Hence, the grandfather clock will now run slow (Option A).
To learn more about the time period of an oscillation, refer to the link: brainly.com/question/26449711
#SPJ4
By definition we have that
force=dP/dt,
where
p is momentum
so
<span>momentum is force*time
p= 15*3 = 45 Ns , west.
</span><span>the change in momentum of the object is 45 N.s</span>
Answer:
Without any external forces a moving object will continue to move in a straight line. The gravitational force between the two objects will provide the centripetal force to keep the objects moving around one another.
1. satellite in orbit around the earth (motion of earth is negligible)
2. moon in orbit around the earth (center of motion several thousand miles
from center of earth)
3. earth in orbit around sun (center of rotation close to center of sun)
4. binary stars (if masses of stars are equal center of rotation is in middle)
Answer:
I think theres air that flows thru it
Explanation: