The mosf difewnt would be that
1. Regulation of glucose blood levels is an example of negative feedback mechanism.
Negative feedback mechanism is a control mechanism involved in homeostasis maintain, in this case maintenance of glucose blood levels in normal range.
Negative feedback mechanism contains sensory system that detects the changes, control system that responds to change and activates mechanisms of effector system that reverse the changes in order to restore conditions to their normal levels.
• Pancreatic cells-sensors
• Insulin-control system
• Body cells- effector cells
2. Blood glucose levels change throughout the day because of the food consumption, but in healthy individuals levels of glucose are successfully regulated via the mechanism of hormones such as insulin and glucagon in a process called glucose blood regulation.
This tight regulation of pancreatic hormones is referred to as glucose homeostasis. Insulin lowers blood sugar and glucagon raises it.
3. If the beta cells are destroyed by an autoimmune disease (immune system attacks its own cells), there would be no insulin release, and consequently, the glucose blood levels would be increased.
Diabetes type I is a metabolic disorder caused by the destruction of insulin-producing pancreatic beta cells.
1) Adenosine triphosphate (ATP) is thought of as the "molecular currency" for energy transfer within the cell. Function: ATPs are used as the main energy source for metabolic functions. They are consumed by energy-requiring (endothermic) processes and produced by energy-releasing (exothermic) processes in the cell and Cells store energy in the form of ATP; cells make 36 ATP through cellular respiration.
2) Energy is normally stored long term as carbohydrate, in plants the storage polymer is starch whereas in animals the storage polymer is glycogen. Both of these are formed from the monomer alpha-glucose (C6H12O6). When energy is required by the cell, storage polymers are hydrolysed to yield glucose molecules, which are the starting point of respiration, a series of chemical regions yielding ATP, the universal cellular energy release molecule.