Hey there
I 've already answered this question twice
by mistake.Kindly check.
Answer:
The roots of the polynomial equation in this case would be the intersection of the 2 polynomial functions. which are at x = 4 and x = -3
Step-by-step explanation:
The roots are found by finding the x-values of the intersections of these two cubic polynomial functions.
We could try solving algebraically, but you have the graph.
Answer: the tuition in 2020 is $502300
Step-by-step explanation:
The annual tuition at a specific college was $20,500 in 2000, and $45,4120 in 2018. Let us assume that the rate of increase is linear. Therefore, the fees in increasing in an arithmetic progression.
The formula for determining the nth term of an arithmetic sequence is expressed as
Tn = a + (n - 1)d
Where
a represents the first term of the sequence.
d represents the common difference.
n represents the number of terms in the sequence.
From the information given,
a = $20500
The fee in 2018 is the 19th term of the sequence. Therefore,
T19 = $45,4120
n = 19
Therefore,
454120 = 20500 + (19 - 1) d
454120 - 20500 = 19d
18d = 433620
d = 24090
Therefore, an
equation that can be used to find the tuition y for x years after 2000 is
y = 20500 + 24090(x - 1)
Therefore, at 2020,
n = 21
y = 20500 + 24090(21 - 1)
y = 20500 + 481800
y = $502300
Answer:
1 false
2 true
3 true
4 false
5 true
Step-by-step explanation:
f(a) = (2a - 7 + a^2) and g(a) = (5 – a).
1 false f(a) is a second degree polynomial and g(a) is a first degree polynomial
When added together, they will be a second degree polynomial
2. true When we add and subtract polynomials, we still get a polynomial, so it is closed under addition and subtraction
3. true f(a) + g(a) = (2a - 7 + a^2) + (5 – a)
Combining like terms = a^2 +a -2
4. false f(a) - g(a) = (2a - 7 + a^2) - (5 – a)
Distributing the minus sign (2a - 7 + a^2) - 5 + a
Combining like terms a^2 +3a -12
5. true f(a)* g(a) = (2a - 7 + a^2) (5 – a).
Distribute
(2a - 7 + a^2) (5) – (2a - 7 + a^2) (a)
10a -35a +5a^2 -2a^2 -7a +a^3
Combining like term
-a^3 + 3 a^2 + 17 a - 35