Answer:

Step-by-step explanation:
To determine which equation passes through the points (3, 7) and (-1, -1), we need to determine the slope of the equation. Then, we shall use point slope form to determine the equation of the line.
<u>Determining the slope of the line:</u>

Substituting the points in the slope formula:

Simplifying the slope:


<u>Determining the equation of the line:</u>
We shall use point slope form to determine the equation of the line.

Substitute the slope and the coordinates of any two points stated above.
![y -7= 2(x- 3 ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\text{Using the point (3,7)}]](https://tex.z-dn.net/?f=y%20-7%3D%202%28x-%203%20%29%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B%5Ctext%7BUsing%20the%20point%20%283%2C7%29%7D%5D)
Simplify the equation and organize it to slope intercept form:


