The final combined velocity after the collision is 20.2 m/s
Explanation:
We can solve this problem by using the law of conservation of momentum: in fact, in absence of external forces, the total momentum of the two car and of the truck must be conserved before and after the collision.
This means that we can write the following equation:
where:
is the mass of the sport car
is the initial velocity of the car (taking its direction as positive direction)
is the mass of the truck
is the initial velocity of the truck
is the final combined velocity of the car and the truck, after the collision
Re-arranging the equation and substituting the values, we find the velocity after the collision:
And the positive sign indicates their final direction is the same as the initial direction of the two vehicles.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion. Displacement is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.
Explanation:
Doesn't seem like we know much here, but we can answer it. Let's talk about what we know. We know it takes 3.24 s for the ball to go up and drop back down again. We know that gravity is the only force acting after the ball leaves the hand, so a = 9.8 m/s^2 (we'll say it's negative in our equations because down being negative is intuitive). We also know that it stops moving for a brief moment at the top of the arc, where v = 0 m/s. Because gravity is the only force, and it slows it down on the way up at the same rate it speeds it up on the way down and the distance covered in upward and downward motion is the same, we can confidently say that it will reach the top of its arc (where v = 0 and it turns around) in half the total time it is in the air, so it takes 1.62 s to reach the peak. Now we can use a kinematics equation, let's use vf = vi + a*t, where vf is final velocity and is 0, vi is initial velocity and is some unknown v we need to solve for, a is acceleration and is -9.8 m/s^2 and t is time and since this is just to the top of the arc, we'll use half the time so 1.62 s. We can solve for vi and plug stuff in like so: v = -a*t = -(-9.8m/s^2)*(1.62s) = 15.876 m/s.