Answer:
a = (v2 - v1) / t
From A to B (8 - 4) m/s / 1 s = 4 m / s^2
From A to D ( 7 - 4) m/s / 5 s = .6 m / s^2
Note these equations hold for "uniform" values
They say nothing about the acceleration at intermediate points - the equation just says that his average speed increased from 4 m/s to 7 m/s during a 5 sec period
Because mass and distance determine gravity, so the more mass you have, the more gravity.
Answer:
D. the masses of the objects and the distance between them
Explanation:
Gravitation is a force, a force doesn't care about the shape or density of objects, only about their masses... and distances.
And you can get it using the following equation:

Where :
G is the universal gravitational constant
: G = 6.6726 x 10-11N-m2/kg2
m represent the mass of each of the two objects
d is the distance between the centers of the objects.
Answer: 490N
Explanation:
Newton is the unit for force. Force = mass x acceleration
F=N m=50kg a=9.8 (earth's acceleration of gravity)
F=50X9.8
F≈490N
The bigger one as the luminosity has a direct exponential relationship with R of the star so the star which has more surface area will be more luminous than the smaller one