Because the vertex of the parabola is at (16,0), its equation is of the formy = a(x-10)² + 15
The graph goes through (0,0), thereforea(0 - 10)² + 15 = 0100a = -15a = -0.15
The equation is y = f(x) = -0.15(x - 10)² + 15
The graph is shown below.
Part A
Note that y = f(x).
The x-intercepts identify values where the function or y=0. The x-intercepts occur at x=0 and x=20, or at (0,0) and (20,0).
The maximum value of y occurs at the vertex (10, 15) because the curve is down due to the negative leading coefficient of -0.15.
The curve increases in the interval x = (-∞, 10) and it decreases in the interval x = (10, ∞).
Part B
When x=12, y = -0.15(12 - 10)² + 15 = 14.4When x=15, y = -0.15(15 - 10)² + 15 = 11.25
The average rate of change between x =12 to x = 15 is(11.25 - 14.4)/(15 - 12) = -1.05
This rate of change represents the slope of the secant line from A to B. It approximates the rate at which f(x) decreases in the interval x =[12, 15].
Answer:
I think that there might be some complex differential equation
stuff going on here if this were in the real world, but for the sake of this problem... may I suggest that the tank is filling up at a rate of
1/8 of a tank per hour...
it is evaporating at a rate of 1/12 tank per hour
you can subtract the rates
1/8 - 1/12 = 12/96- 8/96 = 3/96 = 1/32 tank/hr
so to fill the tank it should take 32 hours...
I think the logic and math work... lets see if someone else will verify this analysis?
Step-by-step explanation:
Answer:
Step-by-step explanation:
Answer:
5/6 - 2/5 = 13/30
Step-by-step explanation:
Answer:
- The volume of cube=1/27 km^3
Step-by-step explanation:
As The volume of cube =the cube(^3) of the sides.