Given:
u = 0, initial speed (sprinter starts from rest)
v = 11.5 m/s, final speed
s = 15 m, distance traveled to attain final speed.
Let
a = average acceleration,
t = time taken to attain final speed.
Then
v² = u² + 2as
or
(11.5 m/s)² = 2*(a m/s²)*(15 m)
a = 11.5²/(2*15) = 4.408 m/s²
Also
v = u +a t
or
(11.5 m/s) = (4.408 m/s²)*(t s)
t = 11.5/4.408 = 2.609 s
Answer:
The average acceleration is 4.41 m/s² (nearest hundredth).
The time required is 2.61 s (nearest hundredth).
Answer:
725.2 N
Explanation:
Since it is not stated the scale, the person or both accelerated or experience weightlessness, the net force acting on the bathroom scale is the weight of the person acting downward as the person stands on the scale .
Weight = mass of a body × acceleration due to gravity
= 74 kg × 9.8 m/s²
= 725.2 N
Answer:
The correct answer is D.
Non-sampling error is the error that results from under-coverage, non-response bias, response bias, or data-entry errors. Sampling error is the error that results because a sample is being used to estimate information about a population.
Explanation:
Sampling error is related to the variation between the true values of the sample and the population. If occurred, it is always random depending upon the sample chosen.
Non-sampling error can be random as well as non-random. Non-sampling error can occur irrespective of the sample chosen. It is related to the inappropriate analysis of the data.
Answer:
The resultant force on charge 3 is Fr= -2,11665 * 10^(-7)
Explanation:
Step 1: First place the three charges along a horizontal axis. The first positive charge will be at point x=0, the second negative charge at point x=10 and the third positive charge at point x=20. Everything is indicated in the attached graph.
Step 2: I must calculate the magnitude of the forces acting on the third charge.
F13: Force exerted by charge 1 on charge 3.
F23: Force exerted by charge 2 on charge 3.
K: Constant of Coulomb's law.
d13: distance from charge 1 to charge 3.
d23: distance from charge 2 to charge 3
Fr: Resulting force.
q1=+2.06 x 10-9 C
q2= -3.27 x 10-9 C
q3= +1.05 x 10-9 C
K=9-10^9 N-m^2/C^2
d13= 0,20 m
d23= 0,10 m
F13= K * (q1 * q3)/(d13)^2
F13=9,7335*10^(-8) N
F23=K * (q2 * q3)/(d23)^2
F23= -3,09 * 10^(-7)
Step 3: We calculate the resultant force on charge 3.
Fr=F13+F23= -2,11665 * 10^(-7)