Answer:
electric field E = (1 /3 e₀) ρ r
Explanation:
For the application of the law of Gauss we must build a surface with a simple symmetry, in this case we build a spherical surface within the charged sphere and analyze the amount of charge by this surface.
The charge within our surface is
ρ = Q / V
Q ’= ρ V
'
The volume of the sphere is V = 4/3 π r³
Q ’= ρ 4/3 π r³
The symmetry of the sphere gives us which field is perpendicular to the surface, so the integral is reduced to the value of the electric field by the area
I E da = Q ’/ ε₀
E A = E 4 πi r² = Q ’/ ε₀
E = (1/4 π ε₀) Q ’/ r²
Now you relate the fraction of load Q ’with the total load, for this we use that the density is constant
R = Q ’/ V’ = Q / V
How you want the solution depending on the density (ρ) and the inner radius (r)
Q ’= R V’
Q ’= ρ 4/3 π r³
E = (1 /4π ε₀) (1 /r²) ρ 4/3 π r³
E = (1 /3 e₀) ρ r
Determined by cross product or ( vector product )
Kinetic, thermal and electrical. There is more then one form of energy
The eight planets of the Solar System arranged in order from the sun:
Mercury: 46 million km / 29 million miles (.307 AU)
Venus: 107 million km / 66 million miles (.718 AU)
Earth: 147 million km / 91 million miles (.98 AU)
Mars: 205 million km / 127 million miles (1.38 AU)
Jupiter: 741 million km /460 million miles (4.95 AU)
Saturn: 1.35 billion km / 839 million miles (9.05 AU)
Uranus: 2.75 billion km / 1.71 billion miles (18.4 AU)
Neptune: 4.45 billion km / 2.77 billion miles (29.8 AU)
Astronomers often use a term called astronomical unit (AU) to represent the distance from the Earth to the Sun.
+ Pluto (Dwarf Planet): 4.44 billion km / 2.76 billion miles (29.7 AU)