Explanation:
Given:
u = 20 m/s
a = 5 m/s^2
v = 30 m/s
t = ?
Use the first kinematic equation of motion:
v = u + at
t = (v - u)/a = 10/5 = 2 seconds
A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (Framework) recommends science education in grades K–12 be built around three major dimensions: science and engineering practices, crosscutting concepts that unify the study of science and engineering through their common application across fields, and core ideas in the major disciplines of natural science.
It mimics the movement of the waves
Answer:
a) I₁ = 11.2 Lux
, vertical direction
, b) I₂ = 1.44 Lux
Explanation:
a) A polarized is a system that absorbs light that is not polarized in the direction of its axis, therefore half of the non-polarized light must be absorbed
consequently the above the processed light has half of the incident intensity and the directional of the polarized
I₁ = I₀ / 2
I₁ = 22.4 / 2
I₁ = 11.2 Lux
is polarized in the vertical direction
b) The polarized light falls on a second polarizer, therefore it must comply with the law of Malus
I₂ = I₁ cos² θ
I₂ = 11.2 cos² 69
I₂ = 1.44 Lux
Answer:
Explanation:
Given:
Steam Mass rate, ms = 1.5 kg/min
= 1.5 kg/min × 1 min/60 sec
= 0.025 kg/s
Air Mass rate, ma = 100 kg/min
= 100 kg/min × 1 min/60 sec
= 1.67 kg/s
A.
Extracting the specific enthalpy and temperature values from property table of “Saturated water – Pressure table” which corresponds to temperature at 0.07 MPa.
xf, quality = 0.9.
Tsat = 89.9°C
hf = 376.57 kJ/kg
hfg = 2283.38 kJ/kg
Using the equation for specific enthalpy,
hi = hf + (hfg × xf)
= 376.57 + (2283.38 × 0.9)
= 2431.552 kJ/kg
The specific enthalpy of the outlet, h2 = hf
= 376.57 kJ/kg
B.
Rate of enthalpy (heat exchange), Q = mass rate, ms × change in specific enthalpy
= ms × (hi - h2)
= 0.025 × (2431.552 - 376.57)
= 0.025 × 2055.042
= 51.37455 kW
= 51.38 kW.