Answer:
If a certain cone with a height of 9 inches has volume V = 3πx2 + 42πx + 147π, what is the cone’s radius r in terms of x?
Step-by-step explanation:
V = 3πx2 + 42πx + 147π
V=3π(x2 + 14x +49)
9.42(x2 + 14x +49)
9.42(x2 + 14x +14) -14 + 49= 0
9.42(x + 7)^2 + 35= 0
9.42(9.42(x + 7)^2 = - 35)9.42
(x + 7)^2 = - 35/9.42)
√(x + 7)^2=√- 35/9.42
x + 7 = - 1.927
x= - 1.927 - 7
x= - 8.927
V = 3π(- 8.927)^2 + 42π(- 8.927) + 147π
V=750.69 - 1177.29 + 461.58
<u>V=34.98</u>
h= 9 inches
V = 13πr2h
34.98 = 13(3.14) (r^2) (h)
34.98 = 40.82 (r^2) 9
34.98 = 367.38 r^2
34.98/ 367.38 = 367.38 r^2/ 367.38
0.095= r^2
Answer:
<em>48 , 88 , 44</em>
Step-by-step explanation:
48° + x° + ( x - 44 )° = 180°
2x = 176
x = 88°
m∠A = <em>48 </em>°
m∠B = <em>88 </em>°
m∠C = <em>44 </em>°
Applying the distance formula, the perimeter of the plot of land, rounded to the nearest tenth, is: 482.8 ft.
<h3>What is the Distance Formula?</h3>
Distance formula is given as:
.
Name the coordinates of the plot of and as follows:
A (0, 120)
B (140, 100)
C (140, 20)
D (0, 0)
Perimeter of the plot of land = AB + BC + CD + AD
AD = |120 - 0| = 120 ft
BC = |100 - 20| = 80 ft
Use the distance formula to find AB and CD:
AB = √[(140−0)² + (100−120)²]
AB = √20000
AB = 141.4 ft
CD = √[(140−0)² + (20−0)²]
CD= √20000
CD = 141.4 ft
Perimeter of the plot of land = 141.4 + 141.4 + 120 + 80 = 482.8 ft.
Learn more about the distance formula on:
brainly.com/question/661229
#SPJ1
<span>1X12, 2X6, 3X4, 4X3, 6X2, and 12X1 are the factor pairs of 12
</span>
Answer:
ya we r
Step-by-step explanation: