<span>They are different and unique from the other states of matter. Plasma is different from a gas, because it is made up of groups of positively and negatively charged particles. In neon gas, the electrons are all bound to the nucleus. In neon plasma, the electrons are free to move around the system.
Hope this helps.
</span>
Answer:
a
The x- and y-components of the total force exerted is

b
The magnitude of the force is

The direction of the force is
Clockwise from x-axis
Explanation:
From the question we are told that
The magnitude of the first charge is 
The magnitude of the second charge is 
The position of the second charge from the first one is 
The magnitude of the third charge is 
The position of the third charge from the first one is 


The position of the third charge from the second one is



The force acting on the third charge due to the first and second charge is mathematically represented as

Substituting values



The magnitude of
is mathematically evaluated as

The direction is obtained as

![\theta = tan ^{-1} [-0.63889]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%20%5E%7B-1%7D%20%5B-0.63889%5D)



Volcanism is associated with two of the plate boundary types: divergent and convergent margins. ... Volcanism can also occur at intraplate volcanoes. These volcanoes are believed to have sources deeper down in the Earth's mantle that remain in a relatively fixed location relative to the always migrating plate boundaries.
The answer is C. It would look similar to the graph for KNO3