Answer:
* roller skates and ice skates.
* roller coaster
Explanation:
One of the best examples for this situation is when we are skating, in the initial part we must create work with a force, it compensates to move, after this the external force stops working and we continue movements with kinetic energy, if there are some ramps, we can going up, where the kinetic energy is transformed into potential energy and when going down again it is transformed into kinetic energy. This is true for both roller skates and ice skates.
Another example is the roller coaster, in this case the motor creates work to increase the energy of the car by raising it, when it reaches the top the motor is disconnected, and all the movement is carried out with changes in kinetic and potential energy. In the upper part the energy is almost all potential, it only has the kinetic energy necessary to continue the movement and in the lower part it is all kinetic; At the end of the tour, the brakes are applied that bring about the non-conservative forces that decrease the mechanical energy, transforming it into heat.
Answer:
internet of things.
Explanation:
The mention Smart refrigerator with information communication system to both manufacturer as well as the customer is an example of internet of things.
The interconnection via internet of computing devices embedded in everyday objects, enabling them to send and receive data. It is also the ability to transfer data without human to human or computer to human interaction.
Answer:
The presence of strong intermolecular forces favors a condensed state of matter. liquid or solid), while very weak intermolecular interaction favor the gaseous state.
It is (A) for the first one and (B) for the second one.