Answer:
the distance traveled by the car is 42.98 m.
Explanation:
Given;
mass of the car, m = 2500 kg
initial velocity of the car, u = 20 m/s
the braking force applied to the car, f = 5620 N
time of motion of the car, t = 2.5 s
The decelaration of the car is calculated as follows;
-F = ma
a = -F/m
a = -5620 / 2500
a = -2.248 m/s²
The distance traveled by the car is calculated as follows;
s = ut + ¹/₂at²
s = (20 x 2.5) + 0.5(-2.248)(2.5²)
s = 50 - 7.025
s = 42.98 m
Therefore, the distance traveled by the car is 42.98 m.
Answer:
When air resistance equals the weight of an object, the object has reached free fall.
Explanation:
- When an object has only force acting on it as gravity then, it experiences free fall.
- During free fall all the forces except gravity is balanced by one another.
- In the question, object's weight is balanced by air resistance so it is in the state of free fall.
- At the null point of free fall, object experiences weightlessness i.e. it feels like object is not attracted by any force.
Explanation:
Below is an attachment containing the solution.
Answer:
The object's velocity would increase due to the change in force.
Explanation:
Umm what are you trying to say