Answer: (2x + 3) • (x-1)
Step-by-step explanation:
1 Pull out like factors :
4x + 6 = 2 • (2x + 3)
STEP
3
:
Pulling out like terms
3.1 Pull out like factors :
(5x - 5) = 5 • (x - 1)
I suppose you just have to simplify this expression.
(2ˣ⁺² - 2ˣ⁺³) / (2ˣ⁺¹ - 2ˣ⁺²)
Divide through every term by the lowest power of 2, which would be <em>x</em> + 1 :
… = (2ˣ⁺²/2ˣ⁺¹ - 2ˣ⁺³/2ˣ⁺¹) / (2ˣ⁺¹/2ˣ⁺¹ - 2ˣ⁺²/2ˣ⁺¹)
Recall that <em>n</em>ª / <em>n</em>ᵇ = <em>n</em>ª⁻ᵇ, so that we have
… = (2⁽ˣ⁺²⁾ ⁻ ⁽ˣ⁺¹⁾ - 2⁽ˣ⁺³⁾ ⁻ ⁽ˣ⁺¹⁾) / (2⁽ˣ⁺¹⁾ ⁻ ⁽ˣ⁺¹⁾ - 2⁽ˣ⁺²⁾ ⁻ ⁽ˣ⁺¹⁾)
… = (2¹ - 2²) / (2⁰ - 2¹)
… = (2 - 4) / (1 - 2)
… = (-2) / (-1)
… = 2
Another way to get the same result: rewrite every term as a multiple of <em>y</em> = 2ˣ :
… = (2²×2ˣ - 2³×2ˣ) / (2×2ˣ - 2²×2ˣ)
… = (4×2ˣ - 8×2ˣ) / (2×2ˣ - 4×2ˣ)
… = (4<em>y</em> - 8<em>y</em>) / (2<em>y</em> - 4<em>y</em>)
… = (-4<em>y</em>) / (-2<em>y</em>)
… = 2
The circumference of the circle is actually the perimeter ( length of the boundary ) of the circle . And a part of the circle which lies between two distinct points on the circumference of the circle is called an arc . If the length of the arc is less than half the circumference , it is called minor arc and remaining portion which is more than half of the circle ( but natural ) is called major arc .
When these two points , which make the arc are joined separately to the centre of circle , these arms make angle at the centre . This is called the angle subtended by the arc at the centre of the circle .
There is a beautiful logical relation exists between arc length and the angle , the arc makes ( subtends ) at the centre of the circle . This relation is as under , the wholle circle subtends an angle of 360 degree at the centre . Half the circumference subtendr 360 / 2 ie 180 degree at the centre . The logical relation becomes Arc Length = Circumference × angle in degrees it ( the arc ) subtends at the centre of the circle / 360 degree . So the answer is very simple :- The Arc Length = 36 × 90 / 360 or 9 units ( may be centimetres or metres or inches , feet , yards , etc ) . Which is definitely length of the minor arc . The length of the major arc ( remaining portion of the circumstance ) is 36 - 9 = 27 units . Hence the required answer of the sum is 9 units .
The trapezoid,segment is false