Answer: It would increase.
Explanation:
The equation for determining the force of the gravitational pull between any two objects is:

Where G is the universal gravitational constant, m1 is the mass of one body, m2 is the mass of the other body, and r^2 is the distance between the two objects' centers squared.
Assuming the Earth's mass but not its diameter increased, in the equation above m1 (the term usually indicative of the object of larger mass) would increase, while the r^2 would not.
Thus, it goes without saying that, with some simple reasoning about fractions, an increasing numerator over a constant denominator would result in a larger number to multiply by G, thus also meaning a larger gravitational strength between Earth and whatever other object is of interest.
Both diamond and coal are formed by changes in pressure and temperature below the Earth's surface. The step in the formation of the minerals is <span>atoms break up in extreme heat. The answer is letter A.</span>
Answer:
11109.825 N
Explanation:
Given Data:
total mass =m=1510 kg
initial acceleration (a) =0.75g ( g=9.81 m/s² )
F=ma
= (1510)*( 0.75*9.81)
= 11109.825 N
Answer:
Period
Explanation:
we know that
The period of a wave is the time required for one complete cycle of the wave to pass by a point.
Distance between the two cars is increasing at the rate of 85 mph.
A passenger in Car-1 says that he is at rest in his own frame of reference,
and Car-2 is moving away from him at 85 mph, toward the west.