The Nazca plate will move under the south american plate. i know its late but it will help others!
Answer:
Explanation:
F = ma
mgsinθ - μmgcosθ = ma
gsinθ - μgcosθ = a
μgcosθ = gsinθ - a
μ = (gsinθ - a) / gcosθ
μ = (9.81sin24 - 0.245) / 9.81cos24
μ = 0.4178906...
μ = 0.418
Answer:
Explanation:
Let the first height be h . second height .75h
third height .75h . fourth height .75²h
fifth height .75²h , sixthth height .75³ and so on
Total distance consists of two geometric series as follows
1 ) first series
h + .75h + .75²h + .75³h......
2 ) second series
.75h +.75²h +.75³h + .75⁴h .......
Sum of first series :
first term a = h , commom ratio r = .75
sum = a / (1 - r )
= h / 1 - .75
= h / .25
4h
sum of second series :--
first term a = .75 h , commom ratio r = .75
sum = a / (1 - r )
= .75h / 1 - .75
= .75h / .25
3h
Total of both the series
= 4h + 3h
= 7h .
h = 1 m
Total distance = 7 m
The first sentence got me all psyched up to answer the question "What
horizontal force do the engines generate in order to accelerate it ?".
But the actual question, in the second sentence, turned out to be
a completely different one.
When the plane levels off and continues on at a constant altitude, it's
not accelerating up or down, so the net vertical force on it is zero.
The lift generated by the wings is exactly balancing the downward
force of gravity on the airplane.
The period is the time it takes any repeating process
to complete one cycle. You just told us what it is for the
pendulum . . . 6 seconds.
The frequency is the reciprocal of the period. For the pendulum,
that's
1 / (6 sec) = (1/6) per second = 1/6 Hertz .