Answer:
v = 24 cm and inverted image
Explanation:
Given that,
The focal length of the object, f = +8 cm
Object distance, u = -12 cm
We need to find the position &nature of the image. Let v be the image distance. Using lens formula to find it :

Put all the values,

So, the image distance from the lens is 24 cm.
Magnification,

The negative sign of magnification shows that the formed image is inverted.
Gravity affet everything and it touches nothing.
Hope this helps!
<h3><u>Answer;</u></h3>
Mechanical advantage
<h3><u>Explanation;</u></h3>
- Mechanical advantage is the ratio of force output from a machine divided by the force input into the machine.
- Mechanical advantage measures the machine's force-magnifying effect. It is an advantage gained by using simple machines to accomplish work with less effort.
- The formula is; M.A = output force/ Input force
Answer:
1.
2.
3.The results from part 1 and 2 agree when r = R.
Explanation:
The volume charge density is given as

We will investigate this question in two parts. First r < R, then r > R. We will show that at r = R, the solutions to both parts are equal to each other.
1. Since the cylinder is very long, Gauss’ Law can be applied.

The enclosed charge can be found by integrating the volume charge density over the inner cylinder enclosed by the imaginary Gaussian surface with radius ‘r’. The integration of E-field in the left-hand side of the Gauss’ Law is not needed, since E is constant at the chosen imaginary Gaussian surface, and the area integral is

where ‘h’ is the length of the imaginary Gaussian surface.

2. For r> R, the total charge of the enclosed cylinder is equal to the total charge of the cylinder. So,

3. At the boundary where r = R:

As can be seen from above, two E-field values are equal as predicted.
Answer:
Either B or D. The answer itself is 2.
Explanation:
The equation for the kinetic energy would be 1/2*mv^2.
When m is doubled, we can plug in 1 and 2 to compare our answers.
Plugging in 1 for mass would give us the answer 1/2*v^2.
Plugging in 2 for mass would give us v^2. This means that the velocity was multiplied by 2, meaning that the answer is it is multiplied by 2.
I am not sure which answer is correct since there seems to be two answer choices with 2 in it, but the answer is either B or D (I will call it ABCD because I do not want to cause confusion by saying 2 multiple times).