1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
romanna [79]
2 years ago
11

simplify 4 times the square root of 6 divided by the square root of 30 by rationalizing the denominator. show your work.

Mathematics
1 answer:
solniwko [45]2 years ago
4 0

Answer:

4*\sqrt{5}/5

Step-by-step explanation:

(4*\sqrt{6})/\sqrt{30}

This is my interpretation, although the question could also be interpreted as 4 * (\sqrt{6}/\sqrt{30})

Multiply the nominator and denominator by sqrt 30

4* sqrt 6 * sqrt 30/ 30

4 * sqrt 6 * sqrt 6 * sqrt 5/30

24*sqrt 5 / 30

4*sqrt5/5

You might be interested in
Find the area of rectangles with the following dimensions.
seraphim [82]

Answer:

I think this is the answer I hope I have helped you

Step-by-step explanation:

a

b

6 0
3 years ago
Solve the equation below<br> Explain your steps<br> .<br> Show your math work<br> 2(3x + 4) = 4x + 2
lisabon 2012 [21]

Answer:

x = -3

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
PLEASE HELP ME I WILL DO A POINTS GIVEAWAY AFTER ALL OF MY QUESTIONS ARE SOLVED
xz_007 [3.2K]

Answer: 9

Step-by-step explanation:

i used math

8 0
3 years ago
Graph y=2x-7 what’s the y intercept whats the slope
Troyanec [42]
Y-intercept: (0,-7)
Slope: 2
4 0
3 years ago
Read 2 more answers
Water is leaking out of an inverted conical tank at a rate of 12,000 cm3/min at the same time that water is being pumped into th
Bas_tet [7]

Answer:

291111.1cm^3/min

Step-by-step explanation:

We are given that

\frac{dV}{dt}_{out}=12000 cm^3/min

Height of tank,h=6 m

Diameter of top,d=4 m

Radius,r=\frac{d}{2}=\frac{4}{2}=2 m

\frac{dh}{dt}=20 cm/min

\frac{r}{h}=\frac{2}{6}=\frac{1}{3}

r=\frac{1}{3} h

We have to find rate at which water is being pumped into the tank.

Volume of conical ,V=\frac{1}{3}\pi r^2 h

V=\frac{1}{3}\pi(\frac{1}{3} h)^2h=\frac{1}{27}\pi h^3

\frac{dV}{dt}=\frac{1}{9}\pi h^2(\frac{dh}{dt})

h=2 m=200 cm

1m=100 cm

\frac{dV}{dt}_{in}-12000=\frac{1}{9}\pi(200)^2\times 20

\frac{dV}{dt}_{in}=12000+\frac{1}{9}\pi (40000)\times 20

\frac{dV}{dt}_{in}=291111.1cm^3/min

4 0
3 years ago
Other questions:
  • I need help with this question
    15·1 answer
  • You are constructing a tangent line from a point outside a given circle to the circle. You have drawn the circle, a point outsid
    15·2 answers
  • 45 POINTS AND BRAINLIEST IF CORRECT
    5·1 answer
  • How to solve for side
    14·1 answer
  • Algebraic expression represents the statement “4 more than the product of 6 and a number?
    6·1 answer
  • Identify the cross section that results from slicing the three-dimensional figure.
    10·2 answers
  • What is 437 squared If you know please help me im doing exams Right now. Have a great day.
    5·2 answers
  • Which best defines a service?
    13·1 answer
  • On a map, 1 inch equals 12.9 miles. If two cities are 4.5 inches apart on the map, how far are they actually apart?
    5·1 answer
  • Round to the nearest tenth wa hit is the perimeter of the triangle
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!