I've prepared some analysis and <span>cucumbers do have many comparable properties to potatoes, tomatoes, and lemons, all of which I know do work. So I would presume that cucumbers would also work. I would recommend trying it yourself to perceive. I'd love to hear the outcomes of your experiment. ;) </span>
Answer: D, splitting water into hydrogen and oxygen is a chemical change.
We could reduce soil erosion and recycle phosphorus from farm and human waste so that we could help make food production sustainable and prevent algae blooms. We can also do land reclamation as well to help solve this problem. With the land, we would have to design a system to where the land could be functional again in order to plant crops, trees, also to help the wildlife that was once a part of the island. Therefore if the design is done before the mining then afterward we can do the reclamation of the land which would help the people to be able to function after the mining. It would also help the future generations that come along after the previous generations. Everyone must work together in the process in order for everyone to survive. If all this is done then the people of the island would not have to import their food. The reclamation process is the most important thing that has to be designed first whether it is land, soil, water, lakes, and clay then after plant trees, vegetation, and other forms of plants to help replenish the land after the mining is done.
I hope I helped :3
<span>Answer: 17.8 cm
</span>
<span>Explanation:
</span>
<span>1) Since temperature is constant, you use Boyle's law:
</span>
<span>PV = constant => P₁V₁ = P₂V₂
</span><span>=> V₁/V₂ = P₂/P₁</span>
<span>
2) Since the ballon is spherical:
</span><span>V = (4/3)π(r)³</span>
<span>
Therefore, V₁/V₂ = (r₁)³ / (r₂)³
</span>
<span>3) Replacing in the equation V₁/V₂ = P₂/P₁:
</span><span><span>(r₁)³ / (r₂)³ </span>= P₂/P₁</span>
<span>
And you can solve for r₂: (r₂)³ = (P₁/P₂) x (r₁)³
</span>(r₂)³ = (1.0 atm / 0.87 atm) x (17 cm)³ = 5,647.13 cm³
<span>
r₂ = 17.8 cm</span>
Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min