Answer:
Step-by-step explanation:
A circle is inscribed in an equilateral triangle PQR with centre O. If angle OQR = 30°, what is the perimeter of the triangle?
This is a circle inscribed in an equilateral triangle with side s.
If you are asking for the perimeter of PQR, it is 3s.
If you are asking for the perimeter of OQR, it is (3+23–√3)s
Since OR and SR are the hypotenuses of right triangles with adjacent side equal to ½ s, their length is ½s / cos 30° = (√3) /3.
(3/3)s + ((√3) /3)s + ((√3) /3)s = ((3 + 2√3)/3)s ≈ 2.1547s
Hope it helps
help me by marking as brainliest....
Chipped toothed
Bit of a potato
Let's hope ya don't get fried
And the dentist on the phone
The answer is 0.6 because you divide 21 by 35 and get 0.6
━━━━━━━☆☆━━━━━━━
▹ Answer
<em>Area = 9</em>
▹ Step-by-Step Explanation
A = b * h ÷ 2
A = 9 * 2 ÷ 2
A = 9
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Answer:
$73.60
Step-by-step explanation:
Original price: $64
Markup: 0.15($64) = $9.60
New retail price: $64 + $9.60 = $73.60