In electrical circuit, this arrangement is called a R-L series circuit. It is a circuit containing elements of an inductor (L) and a resistor (R). Inductance is expressed in units of Henry while resistance is expressed in units of ohms. The relationship between these values is called the impedance, denoted as Z. Its equation is
Z = √(R^2 + L^2)
Z = √((1.24×10^3 ohms)^2 + (6.95×10^-6 H)^2)
Z = 1,240 ohms
The unit for impedance is also ohms. Since the circuit is in series, the voltage across the inductor and the resistor are additive which is equal to 12 V. Knowing the impedance and the voltage, we can determine the maximum current.
I = V/Z=12/1,240 = 9.68 mA
But since we only want to reach 73.6% of its value, I = 9.68*0.736 = 7.12 mA. Then, the equation for R-L circuits is

, where τ = L/R = 6.95×10^-6/1.24×10^3 = 5.6 x 10^-9
Then,
t = 7.45 nanosecondsPart B.) If t = 1.00τ, then t/τ = 1. Therefore,
I = 6.12 mA
<u>Answer</u>
1.667 m/s²
Using the Newton's second law of motion;
force is directly proportional to the rate of change of momentum and it takes place in the direction of force.
i.e F = change in momentum
F = (mv - mu)/t
=m(v-u)/t
= ma
∴ F =ma
a = F/m
= 150/90
= 1.667 m/s²
Answer:
glucose + oxygen -> carbon dioxide + water + energy
Explanation:
The chemical equation for aerobic respiration is C6H12O6 + 6O2 → 6CO2 + 6H2O (glucose + oxygen -> carbon dioxide + water). It also produces energy.
Answer:
M g H = 1/2 M v^2 potential energy = kinetic energy
v^2 = 2 g H = 2 * 9.80 * 6 = 117.6 m/s^2
v = 10.8 m/s
(C)