Hi there!
In this instance, the object spinning in a horizontal circle will experience a net force in the horizontal direction due to tension.
The net force is equivalent to the centripetal force, so:
∑F = T
mv²/r = T
Solve for v:
v = √rT/m
v = 13.96 m/s
Answer
given,
L(t) = 10 - 3.5 t
mass of particle = 2 Kg
radius of the circle = 3.1 m
a) torque
τ = 
τ = 
τ = -3.5 N.m
Particle rotates clockwise as i look down the plane. Hence, its angular velocity is downward.
L decreases the angular acceleration upward. so, net torque is upward.
b) Moment of inertia of the particle
I = m R^2
I = 2 x 3.1²
I = 19.22 kg.m²
L = I ω
ω = 
ω = 
ω = 
A = 0.52 rad/s B = -0.182 rad/s²
Answer:
Tension = 0.012 N
Explanation:
If the black widow spider is hanging vertically motionless from the ceiling above. Then, the weight of the spider must be balancing the tension in the spider web. Therefore,
Tension = Weight
Tension = mg
where,
m = mass of spider = 1.27 g = 0.00127 kg
g = acceleration due to gravity = 9.8 m/s²
Therefore,
Tension = (0.00127 kg)(9.8 m/s²)
<u>Tension = 0.012 N</u>
Answer:
6360 km
Explanation:
Use the kinematics equation
. We are given t = 7.95 hours and a = 0 m/s^2 (constant speed means there is no acceleration). Solve for x.

Your answer should be 9.7 :)