<h3><u>Answer and explanation;</u></h3>
- <u>Melting point</u> is defined as the temperature at which solid and liquid phases are in equilibrium. It is the temperature at which a solid changes state from solid to liquid at atmospheric pressure.
- <u>Boiling poin</u>t is the temperature at which the vapour pressure of a liquid is equal to the external pressure. It is the temperature at which a substance changes from a liquid into a gas.
- <u>The flash point </u>of a flammable liquid or volatile liquid is the lowest temperature at which it can form an ignitable mixture in air. At this temperature the vapor may cease to burn when the source of ignition is removed.
Hi there!
We can begin by finding the acceleration of the block.
Use the kinematic equation:

The block starts from rest, so:

Now, we can do a summation of forces of the block using Newton's Second Law:

mb = mass of the block
T = tension of string
Solve for tension:

Now, we can do a summation of torques for the wheel:

Rewrite:

We solved that the linear acceleration is 1.5 m/s², so we can solve for the angular acceleration using the following:

Now, plug in the values into the equation:

False
Because you can see using a thermal camera I guess
Answer:
pressure of the water = 3.3 ×
pa
Explanation:
given data
velocity v1 = 1.5 m/s
pressure P = 400,000 Pa
inside radius r1 = 1.00 cm
pipe radius r2 = 0.5 cm
h1 = 0 (datum at inlet)
h2 = 5.0 m (datum at inlet)
density of water ρ = 1000 kg/m³
to find out
pressure of the water
solution
we consider here flow speed in bathroom that is = v2 and Pressure in bathroom is = P2
here we will use both continuity and Bernoulli equations
because here we have more than one unknown so that
v1 × A1 = v2 × A2 × P1 + ρ g h1 + (0.5)ρ v1² = P2 + ρ g h2 + (0.5) ρ v2²
now we use here first continuity equation for get v2
v2 =
v2 =
v2 = 6 m/s
and now we use here bernoulli eqution for find here p2 that is
P2 = P1 - 0.5× ρ ×(v2² - v1²) - ρ g (h2- h1 )
P2 = 400000 - 0.5× 1000 ×(6² - 1.5²) - 1000 × 9.81 × (5-0 )
P2 = 3.3 ×
pa
as per the reaction we have

so here 1 mole of H2 react with 1 mole of O2 and give 1 mole of H2O2 as the product
now we will find the moles of given reactant
moles of H2

moles of O2

so here both present in 1 mole each hence the product will also formed 1 mole
so here we have
H2O2 will form
so mass of the product
mass = moles* molecular mass


so the product mass will be 34 g