1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novay_Z [31]
2 years ago
15

At what speed should a ball of mass 2 kg be rolled in order to reach the other side of

Physics
1 answer:
Veronika [31]2 years ago
6 0

Answer:

M g H = 1/2 M v^2       potential energy = kinetic energy

v^2 = 2 g H = 2 * 9.80 * 6 = 117.6 m/s^2

v = 10.8 m/s    

(C)

You might be interested in
PLEASE PLEASE HELP ME!
Vlad1618 [11]
B: heat is transferred as thermal energy by the interaction of moving particles
6 0
3 years ago
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is r
aivan3 [116]

Answer:

Explanation:

Given that,

Initial angular velocity is 0

ωo=0rad/s

It has angular velocity of 11rev/sec

ωi=11rev/sec

1rev=2πrad

Then, wi=11rev/sec ×2πrad

wi=22πrad/sec

And after 30 revolution

θ=30revolution

θ=30×2πrad

θ=60πrad

Final angular velocity is

ωf=18rev/sec

ωf=18×2πrad/sec

ωf=36πrad/sec

a. Angular acceleration(α)

Then, angular acceleration is given as

wf²=wi²+2αθ

(36π)²=(22π)²+2α×60π

(36π)²-(22π)²=120πα

Then, 120πα = 8014.119

α=8014.119/120π

α=21.26 rad/s²

Let. convert to revolution /sec²

α=21.26/2π

α=3.38rev/sec

b. Time Taken to complete 30revolution

θ=60πrad

∆θ= ½(wf+wi)•t

60π=½(36π+22π)t

60π×2=58πt

Then, t=120π/58π

t=2.07seconds

c. Time to reach 11rev/sec

wf=wo+αt

22π=0+21.26t

22π=21.26t

Then, t=22π/21.26

t=3.251seconds

d. Number of revolution to get to 11rev/s

∆θ= ½(wf+wo)•t

∆θ= ½(0+11)•3.251

∆θ= ½(11)•3.251

∆θ= 17.88rev.

5 0
3 years ago
Read 2 more answers
An electron that has an instantaneous velocity of ???? = 2.0 × 106 m ???? ???? + 3.0 × 106 m ???? ???? is moving through the uni
Setler79 [48]

Explanation:

It is given that,

Velocity of the electron, v=(2\times 10^6i+3\times 10^6j)\ m/s

Magnetic field, B=(0.030i-0.15j)\ T

Charge of electron, q_e=-1.6\times 10^{-19}\ C

(a) Let F_e is the force on the electron due to the magnetic field. The magnetic force acting on it is given by :

F_e=q_e(v\times B)

F_e=1.6\times 10^{-19}\times [(2\times 10^6i+3\times 10^6j)\times (0.030i-0.15j)]

F_e=-1.6\times 10^{-19}\times (-390000)(k)

F_e=6.24\times 10^{-14}k\ N

(b) The charge of electron, q_p=1.6\times 10^{-19}\ C

The force acting on the proton is same as force on electron but in opposite direction i.e (-k). Hence, this is the required solution.

8 0
3 years ago
The cabinet is mounted on coasters and has a mass of 45 kg. The casters are locked to prevent the tires from rotating. The coeff
stira [4]

Answer:

the force P required for impending motion is 132.3 N

the largest value of "h" allowed if the cabinet is not to tip over is 0.8 m

Explanation:

Given that:

mass of the cabinet  m = 45 kg

coefficient of static friction μ =  0.30

A free flow body diagram illustrating what the question represents is attached in the file below;

The given condition from the question let us realize that ; the casters are locked to prevent the tires from rotating.

Thus; considering the forces along the vertical axis ; we have :

\sum f_y =0

The upward force and the downward force is :

N_A+N_B = mg

where;

\mathbf { N_A  \ and  \ N_B} are the normal contact force at center point A and B respectively .

N_A+N_B = 45*9.8

N_A+N_B = 441    ------- equation (1)

Considering the forces on the horizontal axis:

\sum f_x = 0

F_A +F_B  = P

where ;

\mathbf{ F_A \ and \ F_B } are the static friction at center point A and B respectively.

which can be written also as:

\mu_s N_A + \mu_s N_B  = P

\mu_s( N_A +  N_B)  = P

replacing our value from equation (1)

P = 0.30 ( 441)    

P = 132.3 N

Thus; the force P required for impending motion is 132.3 N

b) Since the horizontal distance between the casters A and B is 480 mm; Then half the distance = 480 mm/2 = 240 mm = 0.24 cm

the largest value of "h" allowed for  the cabinet is not to tip over is calculated by determining the limiting condition  of the unbalanced torque whose effect is canceled by the normal reaction at N_A and it is shifted to N_B:  

Then:

\sum M _B = 0

P*h = mg*0.24

h =\frac{45*9.8*0.24}{132.3}

h = 0.8 m

Thus; the largest value of "h" allowed if the cabinet is not to tip over is 0.8 m

6 0
3 years ago
If the window is 11 m above the ground, find the time the stone is in flight.
rjkz [21]
d=vi*t+(1/2)gt²

d=11 m
g=9.8 m/s²
vi=0 m/s

11 m=0 m/s*t+(1/2)9.8 m/s²t²
11 m=4.9 m/s²t²
t²=11 m / 4.9 m/s²
t=√(11 m / 4.9 m/s²)=1.489... s≈1.5 s

Answer: the time the sone is in flight is 1.5 s
5 0
3 years ago
Other questions:
  • Why does the number of cooling fins effect the rate of energy transfer from a radiator?
    14·1 answer
  • How does an inclined plane trade force for distance??
    8·1 answer
  • A dragster and driver together have mass 931.9 kg . The dragster, starting from rest, attains a speed of 25.7 m/s in 0.57 s. Fin
    13·1 answer
  • An interference pattern is produced by light with a wavelength 590 nm from a distant source incident on two identical parallel s
    13·1 answer
  • A block is at rest on the incline shown in the figure. The coefficients of static and ki- netic friction are μs = 0.62 and μk =
    11·1 answer
  • Suppose 2.10 C of positive charge is distributed evenly throughout a sphere of 1.30-cm radius. 1) What is the charge per unit vo
    15·1 answer
  • Describe the motion of an object as it accelerates. IN YOUR OWN WORD!! ASAP
    13·1 answer
  • Example 7.3
    12·1 answer
  • The voltage in a circuit is given by the equation V = IR . In this equation , Vis the voltage, the current, and Ris the resistan
    5·1 answer
  • Find the average velocity of the following 4 velocity measurements:
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!