Impulse = change in momentum
The car's momentum was (mass) x (speed)
Momentum = (2400 kg) x (20 m/s)
Momentum = 48,000 km-m/s
To completely stop the car, the impulse = -48,000 km-m/s .
Answer: option A. strong nuclear force.
Explanation:
The diagram shows the subatomic particles inside the nucelous: protons and neutrons.
As you know, the protons are positively charged partilces inside the nucleous.
Being those particles charged with the same kind of charge they experiment electrostatic repulsion. So, how do you explain that they can stand together in such small space as it is the nucleous?
The responsible of keeping the subatomic particles together is the so called strong nuclear force.
Strong nuclear force or simply strong force is one of the four fundamental interactions or forces: i) gravitational, ii) electromagnetic, iii) weak nuclear force, and iv) strong nuclear force.
Strong nuclear force is the strongest force of nature and acts only in short distances as those inside the nucleous and is responsible for both the atraction among quarks and the atraction among protons to bind them together inside the atomic nucleous.
The marbles that are 'more energetic' fall out of the tray, in the same way particles have enough energy to escape and turn into a gas.
Part a)
Magnitude of electric field is given by force per unit charge



Part b)
Electrostatic force on the proton is given as
F = qE


PART C)
Gravitational force is given by



PART d)
Ratio of electric force to weight

