Answer:
i can help you i know this answer
My answer -
the corona,
the sun's outer layer, reaches temperatures of up to 2 million degrees
Fahrenheit (1.1 million Celsius). At this level, the sun's gravity can't
hold on to the rapidly moving particles, and it streams away from the
star.
The sun's activity shifts over the course of its 11-year cycle, with
sun spot numbers, radiation levels, and ejected material changing over
time. These alterations affect the properties of the solar wind,
including its magnetic field properties, velocity, temperature and
density. The wind also differs based on where on the sun it comes from
and how quickly that portion is rotating.
The velocity of the solar wind
is higher over coronal holes, reaching speeds of up to 500 miles (800
kilometers) per second. The temperature and density over coronal holes
are low, and the magnetic field is weak, so the field lines are open to
space. These holes occur at the poles and low latitudes, and reach their
largest when activity on the sun is at its minimum. Temperatures in the
fast wind can reach up to 1 million degrees F (800,000 C).
At the coronal streamer belt around the equator, the solar wind travels
more slowly, at around 200 miles (300 km) per second. Temperatures in
the slow wind reach up to 2.9 million F (1.6 million C).
p.s
Glad to help you and if you need anything else on brainly let me know so I can elp you again have an AWESOME!!! :^)
<span>Two plastic balls suspended by strings are placed close to each other. If they have the same charge then they will repel each other.</span>
Answer:
center of mass of the two masses will lie at x = 2.52 cm
center of gravity of the two masses will lie at x = 2.52 cm
So center of mass is same as center of gravity because value of gravity is constant here
Explanation:
Position of centre of mass is given as

here we have




now we have



so center of mass of the two masses will lie at x = 2.52 cm
now for center of gravity we can use

here we have




now we have



So center of mass is same as center of gravity because value of gravity is constant here
There's no such thing as "an unbalanced force".
If all of the forces acting on an object all add up to zero, then we say that
<span>the group </span>of forces is balanced. When that happens, the group of forces
has the same effect on the object as if there were no forces on it at all.
An example:
Two people with exactly equal strength are having a tug-of-war. They pull
with equal force in opposite directions. Each person is sweating and straining,
grunting and groaning, and exerting tremendous force. But their forces add up
to zero, and the rope goes nowhere. The <u>group</u> of forces on the rope is balanced.
On the other hand, if one of the offensive linemen is pulling on one end of
the rope, and one of the cheerleaders is pulling on the other end, then their
forces don't add up to zero, because even though they're opposite, they're
not equal. The <u>group</u> of forces is <u>unbalanced</u>, and the rope moves.
A group of forces is either balanced or unbalanced. A single force isn't.